Learn More
Is the mechanical unraveling of protein domains by atomic force microscopy (AFM) just a technological feat or a true measurement of their unfolding? By engineering a protein made of tandem repeats of identical Ig modules, we were able to get explicit AFM data on the unfolding rate of a single protein domain that can be accurately extrapolated to zero force.(More)
The immunogenetic basis of severe infections caused by bacille Calmette-Guérin vaccine and environmental mycobacteria in humans remains largely unknown. We describe 18 patients from several generations of 12 unrelated families who were heterozygous for 1 to 5 overlapping IFNGR1 frameshift small deletions and a wild-type IFNGR1 allele. There were 12(More)
Tandem modular proteins underlie the elasticity of natural adhesives, cell adhesion proteins, and muscle proteins. The fundamental unit of elastic proteins is their individually folded modules. Here, we use protein engineering to construct multimodular proteins composed of Ig modules of different mechanical strength. We examine the mechanical properties of(More)
Disulfide bridges have been introduced into barnase to act as probes of folding. One disulfide (between residues 85 and 102) links two loops known to pack together early in the folding pathway. A second disulfide bond (between residues 43 and 80) links two elements of secondary structure known to pack together only after the rate-determining step of(More)
Incorrect folding of proteins, leading to aggregation and amyloid formation, is associated with a group of highly debilitating medical conditions including Alzheimer's disease and late-onset diabetes. The issue of how unwanted protein association is normally avoided in a living system is particularly significant in the context of the evolution of(More)
TNfn3, the third fibronectin type III domain of human tenascin, is an immunoglobulin-like protein that is a good model for experimental and theoretical analyses of Greek key folding. The third fibronectin type III domain of human tenascin folds and unfolds in a two-state fashion over a range of temperature and pH values, and in the presence of stabilising(More)
Most cases of autosomal dominant polycystic kidney disease (ADPKD) are the result of mutations in the PKD1 gene. The PKD1 gene codes for a large cell-surface glycoprotein, polycystin-1, of unknown function, which, based on its predicted domain structure, may be involved in protein-protein and protein-carbohydrate interactions. Approximately 30% of(More)
Atomic force microscopy (AFM) experiments have provided intriguing insights into the mechanical unfolding of proteins such as titin I27 from muscle, but will the same be possible for proteins that are not physiologically required to resist force? We report the results of AFM experiments on the forced unfolding of barnase in a chimeric construct with I27.(More)
The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining(More)
Individual molecules of the giant protein titin span the A-bands and I-bands that make up striated muscle. The I-band region of titin is responsible for passive elasticity in such muscle, and contains tandem arrays of immunoglobulin domains. One such domain (I27) has been investigated extensively, using dynamic force spectroscopy and simulation. However,(More)