Learn More
AIM High-intensity interval training (HIT) results in potent metabolic adaptations in skeletal muscle; however, little is known about the influence of these adaptations on energetics in vivo. We used magnetic resonance spectroscopy to examine the effects of HIT on ATP synthesis from net PCr breakdown (ATPCK ), oxidative phosphorylation (ATPOX ) and(More)
We tested the hypothesis that older muscle has greater metabolic economy (ME) in vivo than young, in a manner dependent, in part, on contraction intensity. Twenty young (Y; 24±1 yr, 10 women), 18 older healthy (O; 73±2, 9 women) and 9 older individuals with mild-to-moderate mobility impairment (OI; 74±1, 7 women) received stimulated twitches (2 Hz, 3 min)(More)
BACKGROUND The gold standard clinical trial design is the double-blind, randomized, controlled trial. No standard practice exists for the "unblinding" of trial participants and no legal obligation is placed on investigators to inform participants of their treatment allocation or study results at the end of a trial. Here we document our experiences of(More)
PURPOSE The objective of this study is to compare activity type classification rates of machine learning algorithms trained on laboratory versus free-living accelerometer data in older adults. METHODS Thirty-five older adults (21 females and 14 males, 70.8 ± 4.9 yr) performed selected activities in the laboratory while wearing three ActiGraph GT3X+(More)
To determine the effects of age and sex on in vivo mitochondrial function of distinct locomotory muscles, the tibialis anterior (TA) and medial gastrocnemius (MG), of young (Y; 24 ± 3 years) and older (O; 69 ± 4) men (M) and women (W) of similar overall physical activity (PA) was compared. In vivo mitochondrial function was measured using phosphorus(More)
Muscle fatigue has been studied with a variety approaches, tools and technologies. The foci of these studies have ranged tremendously, from molecules to the entire organism. Single cell and animal models have been used to gain mechanistic insight into the fatigue process. The theme of this review is the concept that the mechanisms of muscle fatigue do not(More)
Because of the fundamental dependence of mammalian life on adequate mitochondrial function, the question of how and why mitochondria change in old age is the target of intense study. Given the importance of skeletal muscle for the support of mobility and health, this question extends to the need to understand mitochondrial changes in the muscle of older(More)