Jandir M. Hickmann

Learn More
We show that the orbital angular momentum can be used to unveil lattice properties hidden in diffraction patterns of a simple triangular aperture. Depending on the orbital angular momentum of the incident beam, the far field diffraction pattern reveals a truncated optical lattice associated with the illuminated aperture. This effect can be used to measure(More)
We present an experimental and theoretical study of a simple, passive system consisting of a birefringent, two-dimensional photonic crystal and a polarizer in series, and show that superluminal dispersive effects can arise even though no incident radiation is absorbed or reflected. We demonstrate that a vector formulation of the Kramers-Kronig dispersion(More)
The causality principle does not forbid negative group delays of analytic signals in electronic circuits; in particular, the peak of a pulse can leave the exit port of a circuit before it enters the input port. Furthermore, pulse distortion for these "superluminal" analytic signals can be negligible in both the optical and electronic domains. Here we(More)
We have experimentally measured the birefringence in bulk two-dimensional hexagonal photonic crystals in transparent spectral regions above and below the fundamental band gap. Data is presented for structures with different numbers of layers and two different air-filling fractions. We have used these data to design a photonic crystal quarter waveplate and(More)
Recent manifestations of apparently faster-than-light effects confirmed our predictions that the group velocity in transparent optical media can exceed c. Special relativity is not violated by these phenomena. Moreover, in the electronic domain, the causality principle does not forbid negative group delays of analytic signals in electronic circuits, in(More)
We report on the investigation of the nonlinear optical properties of castor oil using the Z-scan technique. Nonlinear refraction and absorption measurements were performed for two different laser wavelengths, 514 and 810 nm, in the CW regime, and for 810 nm in femtosecond regime. The CW results showed that castor oil has a large negative nonlinear(More)
We study numerically the interference resulting from the superposition of two Bessel beams propagating in free space. We discuss how to obtain such beams and show the existence of the self-imaging effect during propagation. The evolution of the superimposed Bessel beams is analyzed on the basis of the evolution of the individual beams. Our exact numerical(More)
We study Zener tunneling in two-dimensional photonic lattices and derive, for the case of hexagonal symmetry, the generalized Landau-Zener-Majorana model describing resonant interaction between high-symmetry points of the photonic spectral bands. We demonstrate that this effect can be employed for the generation of Floquet-Bloch modes and verify the model(More)
We investigate theoretically and experimentally the decomposition of high-order Bessel beams in terms of a new family of nondiffracting beams, referred as Hermite-Bessel beams, which are solutions of the Helmholtz equation in Cartesian coordinates. Based on this decomposition we develop a geometrical representation of first-order Bessel beams, equivalent to(More)