Jana C. Mossanen

Learn More
Acetaminophen (APAP, paracetamol) poisoning is a leading cause of acute liver failure (ALF) in humans and induces hepatocyte necrosis, followed by activation of the innate immune system, further aggravating liver injury. The role of infiltrating monocytes during the early phase of ALF is still ambiguous. Upon experimental APAP overdose in mice,(More)
Macrophage activation by bacterial lipopolysaccharides (LPS) is induced through Toll-like receptor 4 (TLR4). The synthesis and activity of TLR4 downstream signaling molecules modulates the expression of pro- and anti-inflammatory cytokines. To address the impact of post-transcriptional regulation on that process, we performed RIP-Chip analysis. Differential(More)
An overdose of acetaminophen (N-acetyl-p-aminophenol, APAP), also termed paracetamol, can cause severe liver damage, ultimately leading to acute liver failure (ALF) with the need of liver transplantation. APAP is rapidly taken up from the intestine and metabolized in hepatocytes. A small fraction of the metabolized APAP forms cytotoxic mitochondrial protein(More)
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death and the fifth most common tumor worldwide. A limited panel of treatment options, which nowadays include tumor resection, liver transplantation, radiofrequency (thermal) ablation (RF(T)A), transarterial chemoembolization (TACE) and percutaneous ethanol injection (PEI), and the(More)
The induction of acute hepatic damage by acetaminophen (N-acetyl-p-aminophenol [APAP]), also termed paracetamol, is one of the most commonly used experimental models of acute liver injury in mice. The specific values of this model are the highly reproducible, dose-dependent hepatotoxicity of APAP and its outstanding translational importance, because(More)
Liver inflammation as a response to injury is a highly dynamic process involving the infiltration of distinct subtypes of leukocytes including monocytes, neutrophils, T cell subsets, B cells, natural killer (NK) and NKT cells. Intravital microscopy of the liver for monitoring immune cell migration is particularly challenging due to the high requirements(More)
To secure the functionality of activated macrophages in the innate immune response, efficient life span control is required. Recognition of bacterial lipopolysaccharides (LPS) by toll-like receptor 4 (TLR4) induces downstream signaling pathways, which merge to induce the expression of cytokine genes and anti-apoptotic genes. MicroRNAs (miRNAs) have emerged(More)
Acute kidney injury (AKI) develops in up to 40% of patients after cardiac surgery. The soluble urokinase plasminogen activator receptor (suPAR) has been identified as a biomarker for incident chronic kidney disease (CKD). Proenkephalin (proENK) also has been shown to be a biomarker for renal dysfunction. We hypothesized that pre-surgery suPAR and proENK(More)
Macrophages are key regulators of liver fibrosis progression and regression in nonalcoholic steatohepatitis (NASH). Liver macrophages comprise resident phagocytes, Kupffer cells, and monocyte-derived cells, which are recruited via the chemokine receptor CCR2. We aimed at elucidating the therapeutic effects of inhibiting monocyte infiltration in NASH models(More)
  • 1