Learn More
The human multidrug resistance-associated protein (MRP) family currently has seven members. The ability of several of these membrane proteins to transport a wide range of anticancer drugs out of cells and their presence in many tumors make them prime suspects in unexplained cases of drug resistance, although proof that they contribute to clinical drug(More)
The human multidrug resistance proteins MRP4 and MRP5 are organic anion transporters that have the unusual ability to transport cyclic nucleotides and some nucleoside monophosphate analogs. Base and nucleoside analogs used in the chemotherapy of cancer and viral infections are potential substrates. To assess the possible contribution of MRP4 and MRP5 to(More)
Two prominent members of the ATP-binding cassette superfamily of transmembrane proteins, multidrug resistance 1 (MDR1) P-glycoprotein and multidrug resistance protein 1 (MRP1), can mediate the cellular extrusion of xenobiotics and (anticancer) drugs from normal and tumor cells. The MRP subfamily consists of at least six members, and here we report the(More)
Prostaglandins are involved in a wide variety of physiological and pathophysiological processes, but the mechanism of prostaglandin release from cells is not completely understood. Although poorly membrane permeable, prostaglandins are believed to exit cells by passive diffusion. We have investigated the interaction between prostaglandins and members of the(More)
Photoreceptor ribbon synapses release glutamate in response to graded changes in membrane potential evoked by vast, logarithmically scalable light intensities. Neurotransmitter release is modulated by intracellular calcium levels. Large Ca(2+)-dependent chloride currents are important regulators of synaptic transmission from photoreceptors to second-order(More)
Mercaptopurines have been used as anticancer agents for more than 40 years, and most acute lymphoblastic leukemias are treated with 6-mercaptopurine (6MP) or 6-thioguanine (TG). Overexpression of the two related multidrug resistance proteins MRP4 and MRP5 has been shown to confer some resistance against mercaptopurines, which has been attributed to(More)
Mouse fibroblast cell lines lacking functional Mdr1a, Mdr1b, and Mrp1 genes were selected for resistance to topotecan, mitoxantrone, or doxorubicin. Each of the resulting drug-resistant lines showed marked gene amplification of Bcrp1, the mouse homologue of the human ATP-binding cassette transporter gene BCRP/MXR/ABCP, and greatly elevated expression of(More)
Tumor cells may display a multidrug resistance phenotype by overexpression of ATP binding cassette transporter genes such as multidrug resistance (MDR) 1 P-glycoprotein (P-gp) or the multidrug resistance protein 1 (MRP1). MDR3 P-gp is a close homologue of MDR1 P-gp, but its role in MDR is probably minor and remains to be established. The MRP1 protein(More)
Cyclic nucleotides are known to be effluxed from cultured cells or isolated tissues. Two recently described members of the multidrug resistance protein family, MRP4 and MRP5, might be involved in this process, because they transport the 3',5'-cyclic nucleotides, cAMP and cGMP, into inside-out membrane vesicles. We have investigated cGMP and cAMP efflux from(More)
BACKGROUND/AIM Multidrug Resistance Protein 3 (MRP3) transports bile salts and glucuronide conjugates in vitro and is postulated to protect the liver in cholestasis. Whether the absence of Mrp3 affects these processes in vivo is tested. METHODS Mrp3-deficient mice were generated and the contribution of Mrp3 to bile salt and glucuronide conjugate transport(More)