Learn More
Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this(More)
Our understanding of how saprotrophic and mycorrhizal fungi interact to re-circulate carbon and nutrients from plant litter and soil organic matter is limited by poor understanding of their spatiotemporal dynamics. In order to investigate how different functional groups of fungi contribute to carbon and nitrogen cycling at different stages of decomposition,(More)
Boreal forest soils function as a terrestrial net sink in the global carbon cycle. The prevailing dogma has focused on aboveground plant litter as a principal source of soil organic matter. Using (14)C bomb-carbon modeling, we show that 50 to 70% of stored carbon in a chronosequence of boreal forested islands derives from roots and root-associated(More)
Resupinate thelephoroid fungi (hereafter called tomentelloid fungi) have a world-wide distribution and comprise approximately 70 basidiomycete species with inconspicuous, resupinate sporocarps. It is only recently that their ability to form ectomycorrhizas (EM) has been realized, so their distribution, abundance and significance as mycobionts in forest(More)
Novel high-throughput sequencing methods outperform earlier approaches in terms of resolution and magnitude. They enable identification and relative quantification of community members and offer new insights into fungal community ecology. These methods are currently taking over as the primary tool to assess fungal communities of plant-associated endophytes,(More)
A large database of invasive forest pathogens (IFPs) was developed to investigate the patterns and determinants of invasion in Europe. Detailed taxonomic and biological information on the invasive species was combined with country-specific data on land use, climate, and the time since invasion to identify the determinants of invasiveness, and to(More)
With recent methodological advances, molecular markers are increasingly used for semi-quantitative analyses of fungal communities. The aim to preserve quantitative relationships between genotypes through PCR places new demands on primers to accurately match target sites and provide short amplicons. The internal transcribed spacer (ITS) region of the(More)
Fungi colonising root tips of Pinus sylvestris and Picea abies grown under four different seedling cultivation systems were assessed by morphotyping, direct sequencing and isolation methods. Roots were morphotyped using two approaches: (1) 10% of the whole root system from 30 seedlings of each species and (2) 20 randomly selected tips per plant from 300(More)
Interspecific fungal interactions are important ecological processes, whereas their physiological mechanisms are little understood. The aim of this work was to study how activity of fungal extracellular laccase was changed across mycelia during interactions between white- and brown-rot basidiomycetes from different wood decay stages. Qualitative assay of(More)
Understanding the evolutionary histories of invasive species is critical to adopt appropriate management strategies, but this process can be exceedingly complex to unravel. As illustrated in this study of the worldwide invasion of the woodwasp Sirex noctilio, population genetic analyses using coalescent-based scenario testing together with Bayesian(More)