Learn More
PURPOSE To design and evaluate a modular transceiver coil array with 32 independent channels for cardiac MRI at 7.0T. METHODS The modular coil array comprises eight independent building blocks, each containing four transceiver loop elements. Numerical simulations were used for B1 (+) field homogenization and radiofrequency (RF) safety validation. RF(More)
PURPOSE To design, evaluate, and apply a bow tie antenna transceiver radiofrequency (RF) coil array tailored for cardiac MRI at 7.0 Tesla (T). METHODS The radiofrequency (RF) coil array comprises 16 building blocks each containing a bow tie shaped λ/2-dipole antenna. Numerical simulations were used for transmission field homogenization and RF safety(More)
BACKGROUND Functional and morphologic assessment of the right ventricle (RV) is of clinical importance. Cardiovascular magnetic resonance (CMR) at 1.5T has become gold standard for RV chamber quantification and assessment of even small wall motion abnormalities, but tissue analysis is still hampered by limited spatial resolution. CMR at 7T promises(More)
PURPOSE This study examines the subjective acceptance during UHF-CMR in a cohort of healthy volunteers who underwent a cardiac MR examination at 7.0T. METHODS Within a period of two-and-a-half years (January 2012 to June 2014) a total of 165 healthy volunteers (41 female, 124 male) without any known history of cardiac disease underwent UHF-CMR. For the(More)
INTRODUCTION The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. METHODS Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency(More)
BACKGROUND Cardiovascular Magnetic Resonance (CMR) provides valuable information in patients with hypertrophic cardiomyopathy (HCM) based on myocardial tissue differentiation and the detection of small morphological details. CMR at 7.0T improves spatial resolution versus today's clinical protocols. This capability is as yet untapped in HCM patients. We(More)
A susceptibility phantom was designed and built from an acrylic glass cylinder (inner diameter: 170 mm, length: 250 mm). A reference structure consisting of 32 rods (diameter: 3 mm) was placed inside the phantom (Figure 1A) together with a plastic scale with marks every 20 mm. The phantom was filled with agarose gel (ε r = 75, s = 0.73 S/m) to mimic human(More)
A new multi-modality imaging tool is under development in the framework of the INSERT (Integrated SPECT/MRI for Enhanced Stratification in Radio-chemo Therapy) project, supported by the European Community. The final goal is to develop a custom SPECT apparatus that can be used as an insert for commercially available MRI systems. INSERT is expected to offer(More)
  • 1