Jan Petrášek

Learn More
The differential distribution of the plant signaling molecule auxin is required for many aspects of plant development. Local auxin maxima and gradients arise as a result of local auxin metabolism and, predominantly, from directional cell-to-cell transport. In this primer, we discuss how the coordinated activity of several auxin influx and efflux systems,(More)
One of the mechanisms by which signalling molecules regulate cellular behaviour is modulating subcellular protein translocation. This mode of regulation is often based on specialized vesicle trafficking, termed constitutive cycling, which consists of repeated internalization and recycling of proteins to and from the plasma membrane. No such mechanism of(More)
The plant signalling molecule auxin provides positional information in a variety of developmental processes by means of its differential distribution (gradients) within plant tissues. Thus, cellular auxin levels often determine the developmental output of auxin signalling. Conceptually, transmembrane transport and metabolic processes regulate the(More)
Intercellular flow of the phytohormone auxin underpins multiple developmental processes in plants. Plant-specific pin-formed (PIN) proteins and several phosphoglycoprotein (PGP) transporters are crucial factors in auxin transport-related development, yet the molecular function of PINs remains unknown. Here, we show that PINs mediate auxin efflux from(More)
Plant development is governed by signaling molecules called phytohormones. Typically, in certain developmental processes more than 1 hormone is implicated and, thus, coordination of their overlapping activities is crucial for correct plant development. However, molecular mechanisms underlying the hormonal crosstalk are only poorly understood. Multiple(More)
UNLABELLED MicroRNAs are fine tuners of diverse biological responses and are expressed in various cell types of the liver. Here we hypothesized that circulating microRNAs (miRNAs) may serve as biomarkers of liver damage and inflammation. We studied miRNA-122, which is abundant in hepatocytes, and miR-155, -146a, and -125b, which regulate inflammation in(More)
Cytokinin is an important regulator of plant growth and development. In Arabidopsis thaliana, the two-component phosphorelay mediated through a family of histidine kinases and response regulators is recognized as the principal cytokinin signal transduction mechanism activating the complex transcriptional response to control various developmental processes.(More)
Many aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating this concept. However, despite the use of ATIs in plant research for(More)
Phytotropins such as 1-N-naphthylphthalamic acid (NPA) strongly inhibit auxin efflux, but the mechanism of this inhibition remains unknown. Auxin efflux is also strongly decreased by the vesicle trafficking inhibitor brefeldin A (BFA). Using suspension-cultured interphase cells of the BY-2 tobacco (Nicotiana tabacum L. cv Bright-Yellow 2) cell line, we(More)
Alcoholic liver disease (ALD) is characterized by steatosis and upregulation of proinflammatory cytokines, including IL-1β. IL-1β, type I IL-1 receptor (IL-1R1), and IL-1 receptor antagonist (IL-1Ra) are all important regulators of the IL-1 signaling complex, which plays a role in inflammation. Furthermore, IL-1β maturation is dependent on caspase-1(More)