• Citations Per Year
Learn More
In golden angle radial magnetic resonance imaging a constant azimuthal radial profile spacing of 111.246...(°) guarantees a nearly uniform azimuthal profile distribution in k-space for an arbitrary number of radial profiles. Even though this profile order is advantageous for various real-time imaging methods, in combination with balanced steady-state free(More)
PURPOSE To compare the applicability of different self-gating (SG) strategies for respiratory SG in cardiac MRI in combination with iteratively reconstructed (k-t SPARSE SENSE) cine data with low and high temporal resolution. METHODS Eleven SG variants were compared in five volunteers by assessment of the resulting image sharpness compared with nongated(More)
PURPOSE The combination of fully balanced SSFP sequences with iterative golden angle radial sparse parallel (iGRASP) MRI leads to strong image artifacts due to eddy currents caused by the large angular increment of the golden angle ordering. The purpose of this work is to enable the combination of iterative golden angle radial sparse parallel MRI with(More)
Response programs for workplace critical and traumatic events are becoming an acknowledged and sought after standard of care. The current trauma literature recognizes what goes on in the workplace between the Employee Assistance Program (EAP) and management. The authors have taken this intra-organizational relationship, assimilated the information, and(More)
PURPOSE To combine image-based self-gating (img-SG) with ultrashort echo time (UTE) three-dimensional (3D) acquisition for multistage lung imaging during free breathing. METHODS Three k-space ordering schemes (modified spiral pattern, quasirandom numbers and multidimensional Golden Angle) providing uniform coverage of k-space were investigated for(More)
BACKGROUND The objective of this study was the quantification of myocardial motion from 3D tissue phase mapped (TPM) CMR. Recent work on myocardial motion quantification by TPM has been focussed on multi-slice 2D acquisitions thus excluding motion information from large regions of the left ventricle. Volumetric motion assessment appears an important next(More)
Until now, a three-directional velocity field has mostly been obtained by velocity encoding in three directions, which is very time-consuming and hence not usually used in clinical routine. We show the feasibility of combining in-plane tagging with through-plane tissue phase mapping (TPM) to encode a three-directional velocity field at 3 T with reduced(More)
Methods 12 volunteers (30±8 years) and 3 patients (41±11 years) were investigated at a 3T whole body MR scanner (Achieva, Philips) with a 32 channel coil. The patients suffer from DCM, asynchrony and/or LBBB. A velocity encoded navigated segmented gradient echo sequence was applied in the apical, equatorial and basal slice. Acquisition parameters:(More)
Methods Cohorts and Acquisition: 41 volunteers (HV, 25 ± 5 y.), 14 STEMI (63 ± 7 y.), 12 DCM (54 ± 17 y.), and 5 DCM+LBBB (47 ± 8 y.) patients were investigated. Acquisition parameters were: Philips Achieva 3 T, 32 channel cardiac coil, velocity encoded (Tissue Phase Mapping, TPM) segmented black-blood gradient echo with VENC = 30 cm/s, TR/TE = 6.1/4.6 ms,(More)