Jan P. J. M. van der Eerden

Learn More
Evidence is accumulating that in cell membranes microdomains exist, also referred to as rafts or detergent resistant membranes. In this study, atomic force microscopy is used to study supported lipid bilayers, consisting of a fluid phosphatidylcholine, sphingomyelin and cholesterol. Domains were visualized of which the morphology and size depended on the(More)
We used atomic force microscopy (AFM) to study the lateral organization of transmembrane TmAW(2)(LA)(n)W(2)Etn peptides (WALP peptides) incorporated in phospholipid bilayers. These well-studied model peptides consist of a hydrophobic alanine-leucine stretch of variable length, flanked on each side by two tryptophans. They were incorporated in saturated(More)
Lateral segregation in biological membranes leads to the formation of domains. We have studied the lateral segregation in gel-state model membranes consisting of supported dipalmitoylphosphatidylcholine (DPPC) bilayers with various model peptides, using atomic force microscopy (AFM). The model peptides are derivatives of the Ac-GWWL(AL)(n)WWA-Etn peptides(More)
Asymmetric bilayers of different phospholipid compositions have been prepared by the Langmuir-Blodgett (L-B) method, and imaged by atomic force microscopy (AFM). Such bilayers can function as a model for biological membranes. The first leaflet consisted of zwitterionic phospholipids phosphatidylcholine (PC) or phosphatidylethanolamine (PE). The second(More)
The visual system receives a wealth of sensory information of which only little is relevant for behaviour. We present a mechanism in which alpha oscillations serve to prioritize different components of visual information. By way of simulated neuronal networks, we show that inhibitory modulation in the alpha range (~ 10 Hz) can serve to temporally segment(More)
A1 Functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mitsuo Kawato F1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-compartment models of(More)
BACKGROUND Fourier-based techniques are used abundantly in the analysis of electrophysiological data. However, these techniques are of limited value when the signal of interest is non-sinusoidal or non-periodic. NEW METHOD We present sliding window matching (SWM): a new data-driven method for discovering recurring temporal patterns in electrophysiological(More)
  • 1