Learn More
In the present work, we study the growth of hydroxyapatite formation on different TiO(2) nanotube layers. The nanotube layers were fabricated by electrochemical anodization of titanium in fluoride-containing electrolytes. To study various nanotube lengths, layers with an individual tube diameter of 100 nm were grown to a thickness of approximately 2 mum or(More)
Electrochromic devices rely on the electric switchability of the spectral absorption behavior of a thin active layer on a transparent substrate. To produce a system that is fully transparent in the unbiased state, usually the active layer is sandwiched between a conductive glass substrate and a transparent conductive top electrode. Active materials that are(More)
In the present work we show a simple and robust fabrication process of a dense and free-standing membrane consisting of vertically oriented, both-side-open TiO2 nanotubes. This membrane structure allows direct, size-selective, flow-through photocatalytic reactions with a very high efficiency.
The present work reports the fabrication of self-organized porous oxide-nanotube layers on the biomedical titanium alloys Ti-6Al-7Nb and Ti-6Al-4V by a simple electrochemical treatment. These two-phase alloys were anodized in 1M (NH(4))(2)SO(4) electrolytes containing 0.5 wt % of NH(4)F. The results show that under specific anodization conditions(More)