Jan Kmunícek

Learn More
Comparative binding energy (COMBINE) analysis was conducted for 18 substrates of the haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 (DhlA): 1-chlorobutane, 1-chlorohexane, dichloromethane, 1,2-dichloroethane, 1,2-dichloropropane, 2-chloroethanol, epichlorohydrine, 2-chloroacetonitrile, 2-chloroacetamide, and their brominated analogues. The(More)
We evaluate the applicability of automated molecular docking techniques and quantum mechanical calculations to the construction of a set of structures of enzyme-substrate complexes for use in Comparative binding energy (COMBINE) analysis to obtain 3D structure-activity relationships. The data set studied consists of the complexes of eighteen substrates(More)
The hydrolysis of haloalkanes to their corresponding alcohols and inorganic halides is catalyzed by alpha/beta-hydrolases called haloalkane dehalogenases. The study of haloalkane dehalogenases is vital for the development of these enzymes if they are to be utilized for bioremediation of organohalide-contaminated industrial waste. We report the kinetic and(More)
Haloalkane dehalogenases are microbial enzymes that cleave a carbon-halogen bond in halogenated compounds. The haloalkane dehalogenase LinB, isolated from Sphingomonas paucimobilis UT26, is a broad-specificity enzyme. Fifty-five halogenated aliphatic and cyclic hydrocarbons were tested for dehalogenation with the LinB enzyme. The compounds for testing were(More)
Binding of fatty acids to cryptogein, the proteinaceous elicitor from Phytophthora, was studied by using molecular docking and quantitative structure-activity relationships analysis. Fatty acids bind to the groove located inside the cavity of cryptogein. The structure-activity model was constructed for the set of 27 different saturated and unsaturated fatty(More)
We present a generic system for utilization of application programs in the EGEE Grid environment–the CHARON system. Charon was developed by computational chemistry community in the Czech Republic to provide easily manageable, comfortable, and modular environment to fulfill specific requirements of computational chemistry application users. It currently(More)
Interactions between large biomolecules and smaller bio-active ligands are usually studied through a process called docking. Its aim is to find an energetically favorable orientation of a ligand within an active site of a biomolecule. Chemical reactions take place in active site and the role of the ligand is either to speed up, slow down or change the(More)
  • 1