Learn More
Oxygenic photosynthesis is the principal energy converter on earth. It is driven by photosystems I and II, two large protein-cofactor complexes located in the thylakoid membrane and acting in series. In photosystem II, water is oxidized; this event provides the overall process with the necessary electrons and protons, and the atmosphere with oxygen. To(More)
Oxygenic photosynthesis in plants, algae and cyanobacteria is initiated at photosystem II, a homodimeric multisubunit protein-cofactor complex embedded in the thylakoid membrane. Photosystem II captures sunlight and powers the unique photo-induced oxidation of water to atmospheric oxygen. Crystallographic investigations of cyanobacterial photosystem II have(More)
Photosystem II (PSII) is a large homodimeric protein-cofactor complex located in the photosynthetic thylakoid membrane that acts as light-driven water:plastoquinone oxidoreductase. The crystal structure of PSII from Thermosynechococcus elongatus at 2.9-A resolution allowed the unambiguous assignment of all 20 protein subunits and complete modeling of all 35(More)
The oxidation of water to dioxygen is catalyzed within photosystem II (PSII) by a Mn(4)Ca cluster, the structure of which remains elusive. Polarized extended x-ray absorption fine structure (EXAFS) measurements on PSII single crystals constrain the Mn(4)Ca cluster geometry to a set of three similar high-resolution structures. Combining polarized EXAFS and(More)
This mini-review briefly summarizes our current knowledge on the reaction pattern of light-driven water splitting and the structure of Photosystem II that acts as a water:plastoquinone oxidoreductase. The overall process comprises three types of reaction sequences: (a) light-induced charge separation leading to formation of the radical ion pair P680+•Q A −•(More)
Photosystem II (PSII) is a homodimeric protein-cofactor complex embedded in the thylakoid membrane that catalyses light-driven charge separation accompanied by the oxidation of water during oxygenic photosynthesis. Biochemical analysis of the lipid content of PSII indicates a number of integral lipids, their composition being similar to the average lipid(More)
  • Jan Kern, Albert Guskov
  • 2011
To maintain its functionality, photosystem II (PSII) employs several types of auxiliary molecules (cofactors). As shown for PSII from Thermosynechococcus elongatus, lipids previously thought to play mostly the role of a hydrophobic matrix for embedding the membrane proteins, must be considered as a new, multifunctional type of cofactors, playing a vital(More)
Using the 2.9 A resolution structure of the membrane-intrinsic protein-cofactor complex photosystem II (PSII) from the cyanobacterium Thermosynechococcus elongatus, we calculated and characterized nine possible substrate/product channels leading to/away from the Mn(4)Ca cluster, where water is oxidized to dioxygen, protons, and electrons. Five narrow(More)
The thermophilic cyanobacterium Thermosynechococcus elongatus was cultivated under controlled growth conditions using a new type of photobioreactor, allowing us to optimise growth conditions and the biomass yield. A fast large-scale purification method for monomeric and dimeric photosystem II (PSII) solubilized from thylakoid membranes of this(More)
The photosynthetic oxygen-evolving photosystem II (PSII) is the only known biochemical system that is able to oxidize water molecules and thereby generates almost all oxygen in the Earth's atmosphere. The elucidation of the structural and mechanistic aspects of PSII keeps scientists all over the world engaged since several decades. In this Minireview, we(More)