Learn More
We present a new, real-time method for rendering diffuse and glossy objects in low-frequency lighting environments that captures soft shadows, interreflections, and caustics. As a preprocess, a novel global transport simulator creates functions over the object's surface representing transfer of arbitrary, low-frequency incident lighting into <i>transferred(More)
We propose a technique for fusing a bracketed exposure sequence into a high quality image, without converting to High dynamic range (HDR) first. Skipping the physically based HDR assembly step simplifies the acquisition pipeline. This avoids camera response curve calibration and is computationally efficient. It also allows for including flash images in the(More)
We propose a technique for fusing a bracketed exposure sequence into a high quality image, without converting to HDR first. Skipping the physically-based HDR assembly step simplifies the acquisition pipeline. This avoids camera response curve calibration and is computationally efficient. It also allows for including flash images in the sequence. Our(More)
The Laplacian pyramid is ubiquitous for decomposing images into multiple scales and is widely used for image analysis. However, because it is constructed with spatially invariant Gaussian kernels, the Laplacian pyramid is widely believed as being unable to represent edges well and as being ill-suited for edge-aware operations such as edge-preserving(More)
A separable decomposition of bidirectional reflectance distributions (BRDFs) is used to implement arbitrary reflectances from point sources on existing graphics hardware. Two-dimensional texture mapping and compositing operations are used to reconstruct samples of the BRDF at every pixel at interactive rates. A change of variables, the Gram-Schmidt(More)
Real-time shading using general (e.g., anisotropic) BRDFs has so far been limited to a few point or directional light sources. We extend such shading to smooth, area lighting using a low-order spherical harmonic basis for the lighting environment. We represent the 4D product function of BRDF times the cosine factor (dot product of the incident lighting and(More)
Real-world objects are usually composed of a number of different materials that often show subtle changes even within a single material. Photorealistic rendering of such objects requires accurate measurements of the reflection properties of each material, as well as the spatially varying effects. We present an image-based measuring method that robustly(More)
We present a method for interactive computation of indirect illumination in large and fully dynamic scenes based on approximate visibility queries. While the high-frequency nature of direct lighting requires accurate visibility, indirect illumination mostly consists of smooth gradations, which tend to mask errors due to incorrect visibility. We exploit this(More)
PatchMatch (PM) is a simple, yet very powerful and successful method for optimizing continuous labelling problems. The algorithm has two main ingredients: the update of the solution space by sampling and the use of the spatial neighbourhood to propagate samples. We show how these ingredients are related to steps in a specific form of belief propagation (BP)(More)
The measurement of accurate material properties is an important step towards photorealistic rendering. Many real-world objects are composed of a number of materials that often show subtle changes even within a single material. Thus, for photorealistic rendering both the general surface properties as well as the spatially varying effects of the object are(More)