Jan Ingo Flege

Learn More
Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the(More)
The growth morphology and structure of ceria nano-islands on a stepped Au(788) surface has been investigated by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). Within the concept of physical vapor deposition, different kinetic routes have been employed to design ceria-Au inverse model catalysts with different ceria(More)
An important part of fundamental research in catalysis is based on theoretical and modeling foundations which are closely connected with studies of single-crystalline catalyst surfaces. These so-called model catalysts are often prepared in the form of epitaxial thin films, and characterized using advanced material characterization techniques. This concept(More)
An investigation of how electron/photon beam exposures affect the intercalation rate of Na deposited on graphene prepared on Si-face SiC is presented. Focused radiation from a storage ring is used for soft X-ray exposures while the electron beam in a low energy electron microscope is utilized for electron exposures. The microscopy and core level(More)
We investigated the adsorption and reaction of methanol on continuous and discontinuous films of samarium oxide (SmO x) grown on Pt(111) in ultrahigh vacuum. The methanol decomposition was studied by temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), while structural changes of the oxide surface were monitored(More)
Oxidation of silver films of one-and two-monolayer thicknesses on the Ni(111) surface was investigated by low-energy electron microscopy at temperatures of 500 and 600 K. Additionally, intensity–voltage curves were measured in situ during oxidation to reveal the local film structure on a nanometer scale. At both temperatures, we find that exposure to(More)
Single-crystal atomic-layer-deposited (ALD) Y 2 O 3 films 2 nm thick were epitaxially grown on molecular beam epitaxy (MBE) GaAs(001)-4 ˆ 6 and GaAs(111)A-2 ˆ 2 reconstructed surfaces. The in-plane epitaxy between the ALD-oxide films and GaAs was observed using in-situ reflection high-energy electron diffraction in our uniquely designed MBE/ALD(More)
Cerium oxide is a very interesting material that finds applications in many different fields, such as catalysis, energy conversion, and biomedicine. An interesting approach to unravel the complexity of real systems and obtain an improved understanding of cerium oxide-based materials is represented by the study of model systems in the form of epitaxial(More)
Liquid eutectic Pt-Si droplets, migrating across a Si(100) surface due to an applied temperature gradient, interact measurably with surface steps. An analysis of the interaction yields a critical size of hundreds of nanometers below which droplets are constrained to move parallel to monolayer steps. Bunches of closely spaced steps are capable of guiding(More)