Learn More
Although quantitative PCR (qPCR) is becoming the method of choice for expression profiling of selected genes, accurate and straightforward processing of the raw measurements remains a major hurdle. Here we outline advanced and universally applicable models for relative quantification and inter-run calibration with proper error propagation along the entire(More)
BACKGROUND Currently, a lack of consensus exists on how best to perform and interpret quantitative real-time PCR (qPCR) experiments. The problem is exacerbated by a lack of sufficient experimental detail in many publications, which impedes a reader's ability to evaluate critically the quality of the results presented or to repeat the experiments. CONTENT(More)
Compromised RNA quality is suggested to lead to unreliable results in gene expression studies. Therefore, assessment of RNA integrity and purity is deemed essential prior to including samples in the analytical pipeline. This may be of particular importance when diagnostic, prognostic or therapeutic conclusions depend on such analyses. In this study, the(More)
The XML-based Real-Time PCR Data Markup Language (RDML) has been developed by the RDML consortium (http://www.rdml.org) to enable straightforward exchange of qPCR data and related information between qPCR instruments and third party data analysis software, between colleagues and collaborators and between experimenters and journals or public repositories. We(More)
Despite improvements in terms of sequence quality and price per basepair, Sanger sequencing remains restricted to screening of individual disease genes. The development of massively parallel sequencing (MPS) technologies heralded an era in which molecular diagnostics for multigenic disorders becomes reality. Here, we outline different PCR amplification(More)
Two surveys of over 1,700 publications whose authors use quantitative real-time PCR (qPCR) reveal a lack of transparent and comprehensive reporting of essential technical information. Reporting standards are significantly improved in publications that cite the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines,(More)
Hereditary hearing loss (HL) can originate from mutations in one of many genes involved in the complex process of hearing. Identification of the genetic defects in patients is currently labor intensive and expensive. While screening with Sanger sequencing for GJB2 mutations is common, this is not the case for the other known deafness genes (> 60). Next(More)
β-site AβPP cleaving enzyme 1 (BACE1) catalyses the rate-limiting step for production of amyloid-β (Aβ) peptides, involved in the pathological cascade underlying Alzheimer's disease (AD). Elevated BACE1 protein levels and activity have been reported in AD postmortem brains. Our study explored whether this was due to elevated BACE1 mRNA expression. RNA was(More)
This report summarizes the proceedings of the second workshop of the 'Minimum Information for Biological and Biomedical Investigations' (MIBBI) consortium held on Dec 1-2, 2010 in Rüdesheim, Germany through the sponsorship of the Beilstein-Institute. MIBBI is an umbrella organization uniting communities developing Minimum Information (MI) checklists to(More)
The quantitative polymerase chain reaction (qPCR) is widely utilized for gene expression analysis. However, the lack of robust strategies for cross laboratory data comparison hinders the ability to collaborate or perform large multicentre studies conducted at different sites. In this study we introduced and validated a workflow that employs universally(More)