Learn More
Oxidized low-density lipoprotein (OxLDL) exerts proliferation and apoptosis in vascular cells, depending on its concentration and the duration of exposure. Recent studies indicate that [O(2)](-) is involved in cell cycle regulation and that OxLDL stimulates endothelial cells to produce [O(2)](-). This study examined the role of nicotinamide adenine(More)
Physiological levels of laminar shear stress completely abrogate apoptosis of human endothelial cells in response to a variety of stimuli and might therefore importantly contribute to endothelial integrity. We show here that the apoptosis-suppressive effects of shear stress are mediated by upregulation of Cu/Zn SOD and NO synthase. Shear stress-mediated(More)
The vasomotor and cyclic GMP-elevating activity of YC-1, a novel NO-independent activator of soluble guanylyl cyclase (sGC), was studied in isolated rabbit aortic rings and compared to that of the NO donor compounds sodium nitroprusside (SNP) and NOC 18. Similarly to SNP and NOC 18, YC-1 (0.3-300 microM) caused a concentration-dependent,(More)
BACKGROUND Glomerulosclerosis and atherosclerosis are chronic inflammatory processes that may be influenced by oxidized lipoproteins, oxidized low-density lipoproteins (oxLDL), and oxidized lipoprotein(a) [oxLp(a)]. We hypothesize that these lipoproteins contribute to the development of glomerulosclerosis and atherosclerosis through the induction of(More)
Ischemic acute renal failure (iARF) was described to reduce renal extraction of the organic anion para-aminohippurate (PAH) in humans. The rate-limiting step of renal organic anion secretion is its basolateral uptake into proximal tubular cells. This process is mediated by the organic anion transporters OAT1 and OAT3, which both have a broad spectrum of(More)
BACKGROUND Elevated oxidative stress and superoxide anion formation in vascular cells could promote conversion of LDL to atherogenic oxidized LDL (oxLDL), contributing to endothelial dysfunction and atherosclerosis. As a major source of vascular superoxide anion formation, an endothelial NAD(P)H oxidase, similar to the leukocyte enzyme, has been identified.(More)
BACKGROUND Atherogenic lipoproteins cause injury to the vascular wall in the early phase of atherogenesis. We assessed the effects of native (nLDL) and oxidized (oxLDL) low-density lipoprotein (LDL) and lipoprotein (a) [Lp(a)] on O2- formation and cell death in cultured human umbilical vein endothelial cells (HUVECs) and rabbit aorta (RA). METHODS AND(More)
BACKGROUND Oxidized LDL (oxLDL) is believed to play a key role as a triggering molecule that causes injury to the endothelium as an early event in atherogenesis. However, the mechanisms by which oxLDL injures endothelial cells are entirely unknown. We speculate that oxLDL may activate a cellular suicide pathway that leads to apoptosis. METHODS AND RESULTS(More)
BACKGROUND Hyperlipoproteinemia is associated with impairment of nitric oxide (NO)-mediated, endothelium-dependent dilation in renal arteries. In the present study, we assessed and compared the effects of human lipoprotein(a) and LDL on endothelium-dependent and -independent dilation in vitro. METHODS AND RESULTS Dilator responses were detected in(More)
Hypertension and atherogenic low-density lipoproteins cause attenuation of endothelium-dependent dilations in vivo. We investigated a potential interference of high transmural pressure with the effects of low-density lipoproteins on endothelium-dependent dilation in vitro. Furthermore, we determined whether high-density lipoproteins preserve endothelial(More)