Learn More
Sphingolipids are major components of the plasma membrane, tonoplast, and other endomembranes of plant cells. Previous compositional analyses have focused only on individual sphingolipid classes because of the widely differing polarities of plant sphingolipids. Consequently, the total content of sphingolipid classes in plants has yet to be quantified. In(More)
All plant cells produce fatty acids from acetyl-CoA by a common pathway localized in plastids. Although the biochemistry of this pathway is now well understood, much less is known about how plants control the very different amounts and types of lipids produced in different tissues. Thus, a central challenge for plant lipid research is to provide a molecular(More)
An Arabidopsis fatty acid elongase gene, KCS1, with a high degree of sequence identity to FAE1, encodes a 3-ketoacyl-CoA synthase which is involved in very long chain fatty acid synthesis in vegetative tissues, and which also plays a role in wax biosynthesis. Sequence analysis of KCS1 predicted that this synthase was anchored to a membrane by two adjacent(More)
Changes in sphingolipids have been associated with profound effects in cell fate and development in both plants and animals. Sphingolipids as a group consist of a large number of different compound classes of which numerous individual species may vary in response to environmental stimuli to affect cellular responses. The ability to measure all sphingolipids(More)
Sphingolipids are structural components of endomembranes and function through their metabolites as bioactive regulators of cellular processes such as programmed cell death. A characteristic feature of plant sphingolipids is their high content of trihydroxy long-chain bases (LCBs) that are produced by the LCB C-4 hydroxylase. To determine the functional(More)
Camelina (Camelina sativa), a Brassicaceae oilseed, has received recent interest as a biofuel crop and production platform for industrial oils. Limiting wider production of camelina for these uses is the need to improve the quality and content of the seed protein-rich meal and oil, which is enriched in oxidatively unstable polyunsaturated fatty acids that(More)
The 3-ketoacyl-acyl carrier protein (ACP) synthase III from spinach was purified to homogeneity by an eight-step procedure that included an ACP-affinity column. The size of the native enzyme was M(r) = 63,000 based on gel filtration, and its subunit size was M(r) = 40,500 based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that(More)
The fatty acid elongase-1 beta-ketoacyl-CoA synthase, FAE1 KCS, a seed-specific elongase condensing enzyme from Arabidopsis, is involved in the production of eicosenoic (C20:1) and erucic (C22:1) acids. Alignment of the amino acid sequences of FAE1 KCS, KCS1, and five other putative elongase condensing enzymes (KCSs) revealed the presence of six conserved(More)
In order to examine potential regulatory steps in plant fatty acid biosynthesis, we have developed procedures for the analysis of the major acyl-acyl carrier protein (ACP) intermediates of this pathway. These techniques have been used to separate and identify acyl-ACPs with chain configurations ranging from 2:0 to 18:1 and to determine the relative in vivo(More)
Several 3-keto-synthases have been studied, including the soluble fatty acid synthases, those involved in polyketide synthesis, and the FAE1-like 3-ketoacyl-CoA synthases. All of these condensing enzymes have a common ancestor and an enzymatic mechanism that involves a catalytic triad consisting of Cys, His, and His/Asn. In contrast to the FAE1-like family(More)