Jan E. Kammenga

Learn More
Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic response of gene expression also shows heritable difference has(More)
In ecotoxicology, the state of the art for effect assessment of chemical mixtures is through multiple dose-response analysis of single compounds and their combinations. Investigating whether such data deviate from the reference models of concentration addition and/or independent action to identify overall synergism or antagonism is becoming routine.(More)
This review has served to present the most recent information on a selected series of biomarker studies undertaken on soil invertebrates during two extensive European-funded scientific consortia, BIOPRINT and BIOPRINT-II. The goals were to develop and validate methods for the analysis of markers of stress in a range of soil-dwelling organisms. We have(More)
Phenotypic plasticity and genotype–environment interactions (GEI) play an important role in the evolution of life histories. Knowledge of the molecular genetic basis of plasticity and GEI provides insight into the underlying mechanisms of life-history changes in different environments. We used a genomewide single-nucleotide polymorphism map in a recombinant(More)
Gene expression becomes more variable with age, and it is widely assumed that this is due to a decrease in expression regulation. But currently there is no understanding how gene expression regulatory patterns progress with age. Here we explored genome-wide gene expression variation and regulatory loci (eQTL) in a population of developing and aging C.(More)
The matrix of genetic variances and covariances (G matrix) represents the genetic architecture of multiple traits sharing developmental and genetic processes and is central for predicting phenotypic evolution. These predictions require that the G matrix be stable. Yet the timescale and conditions promoting G matrix stability in natural populations remain(More)
To gain a better understanding of the mechanisms through which a chemical exerts toxicity, a deeper insight is needed regarding the physiological processes that take place during a toxic stress. This issue can have important benefits for risk assessment, because it can contribute to a better interpretation of toxicity data. Here, we study the physiological(More)
Heat shock proteins (hsps) are potential biomarkers for monitoring environmental pollution. In this study, the use of hsps as biomarkers in field bioassays was evaluated in terrestrial invertebrates exposed to a metal gradient near Avonmouth, UK. We investigated the hsp70 response in resident and transplanted isopods of the species Oniscus asellus and(More)
Empirical evidence is mounting to suggesting that genetic correlations between life-history traits are environment specific. However, detailed knowledge about the loci underlying genetic correlations in different environments is scant. Here, we studied the influence of temperature (12°C and 24°C) on the genetic correlations between egg size, egg number and(More)
For ecological risk assessment, the additive model may be used to empirically predict toxic mixture effects. Detailed toxicity tests were performed to determine whether effects of mixtures of copper-cadmium and copper-carbendazim on Caenorhabditis elegans were similar to the effects of the individual compounds. Effects on the course of reproduction, the(More)