Jan Drugowitsch

Learn More
Decision making often involves the accumulation of information over time, but acquiring information typically comes at a cost. Little is known about the cost incurred by animals and humans for acquiring additional information from sensory variables due, for instance, to attentional efforts. Through a novel integration of diffusion models and dynamic(More)
In an uncertain and ambiguous world, effective decision making requires that subjects form and maintain a belief about the correctness of their choices, a process called meta-cognition. Prediction of future outcomes and self-monitoring are only effective if belief closely matches behavioral performance. Equality between belief and performance is also(More)
When facing uncertainty, adaptive behavioral strategies demand that the brain performs probabilistic computations. In this probabilistic framework, the notion of certainty and confidence would appear to be closely related, so much so that it is tempting to conclude that these two concepts are one and the same. We argue that there are computational reasons(More)
Learning Classifier Systems (LCS) consist of the three components: function approximation, reinforcement learning, and classifier replacement. In this paper we formalize the function approximation part, by providing a clear problem definition, a formalization of the LCS function approximation architecture, and a definition of the function approximation aim.(More)
What do you do to start reading design and analysis of learning classifier systems a probabilistic approach? Searching the book that you love to read first or find an interesting book that will make you want to read? Everybody has difference with their reason of reading a book. Actuary, reading habit must be from earlier. Many people may be love to read,(More)
Humans and animals can integrate sensory evidence from various sources to make decisions in a statistically near-optimal manner, provided that the stimulus presentation time is fixed across trials. Little is known about whether optimality is preserved when subjects can choose when to make a decision (reaction-time task), nor when sensory inputs have(More)
For decisions made under time pressure, effective decision making based on uncertain or ambiguous evidence requires efficient accumulation of evidence over time, as well as appropriately balancing speed and accuracy, known as the speed/accuracy trade-off. For simple unimodal stimuli, previous studies have shown that human subjects set their speed/accuracy(More)
To fully understand the properties of Accuracy-based Learning Classifier Systems, we need a formal framework that captures all components of classifier systems, that is, function approximation, reinforcement learning, and classifier replacement, and permits the modelling of them separately and in their interaction. In this paper we extend our previous work(More)
Previous theoretical and experimental work on optimal decision-making was restricted to the artificial setting of a reliability of the momentary sensory evidence that remained constant within single trials. The work presented here describes the computation and characterization of optimal decision-making in the more realistic case of an evidence reliability(More)