Learn More
Decision making often involves the accumulation of information over time, but acquiring information typically comes at a cost. Little is known about the cost incurred by animals and humans for acquiring additional information from sensory variables due, for instance, to attentional efforts. Through a novel integration of diffusion models and dynamic(More)
When facing uncertainty, adaptive behavioral strategies demand that the brain performs probabilistic computations. In this probabilistic framework, the notion of certainty and confidence would appear to be closely related, so much so that it is tempting to conclude that these two concepts are one and the same. We argue that there are computational reasons(More)
Humans and animals can integrate sensory evidence from various sources to make decisions in a statistically near-optimal manner, provided that the stimulus presentation time is fixed across trials. Little is known about whether optimality is preserved when subjects can choose when to make a decision (reaction-time task), nor when sensory inputs have(More)
In an uncertain and ambiguous world, effective decision making requires that subjects form and maintain a belief about the correctness of their choices, a process called meta-cognition. Prediction of future outcomes and self-monitoring are only effective if belief closely matches behavioral performance. Equality between belief and performance is also(More)
Learning Classifier Systems (LCS) consist of the three components: function approximation, reinforcement learning, and classifier replacement. In this paper we formalize the function approximation part, by providing a clear problem definition, a formalization of the LCS function approximation architecture, and a definition of the function approximation aim.(More)
Optimal binary perceptual decision making requires accumulation of evidence in the form of a probability distribution that specifies the probability of the choices being correct given the evidence so far. Reward rates can then be maximized by stopping the accumulation when the confidence about either option reaches a threshold. Behavioral and neuronal(More)
The development of the XCS Learning Classifier System has produced a robust and stable implementation that performs competitively in direct-reward environments. Although investigations in delayed-reward (i.e. multi-step) environments have shown promise, XCS still struggles to efficiently find optimal solutions in environments with long action-chains. This(More)
Numerous studies have shown that neuronal responses are modulated by stimulus properties and also by the state of the local network. However, little is known about how activity fluctuations of neuronal populations modulate the sensory tuning of cells and affect their encoded information. We found that fluctuations in ongoing and stimulus-evoked population(More)