Learn More
The biogenic amine octopamine is known to enhance the sensitivity of male moths to their species-specific pheromones in flight-tunnel experiments. This sensitization of pheromone-guided upwind flight is at least partly due to octopamine-dependent increases in the peak nerve impulse frequency of the pheromone response of olfactory receptor neurons. It is not(More)
In extracellular tip recordings from long trichoid sensilla of male Manduca sexta moths, we studied dose-response relationships in response to bombykal stimuli of two different durations in the adapted and the non-adapted state. Bombykal-responsive cells could be distinguished from non-bombykal-sensitive cells in each trichoid sensillum because the(More)
Pheromone-dependent mate search is under strict circadian control in different moth species. But it remains unknown whether daytime-dependent changes in pheromone sensitivity already occur at the periphery in male moths. Because adapting pheromone stimuli cause rises of cyclic guanosine monophosphate (cGMP) in pheromone-sensitive trichoid sensilla of the(More)
In the hawkmoth Manduca sexta, pheromone stimuli of different strength and duration rise the intracellular Ca2+ concentration in olfactory receptor neurons (ORNs). While second-long pheromone stimuli activate protein kinase C (PKC), which apparently underlies processes of short-term adaptation, minute-long pheromone stimuli elevate cyclic guanosine(More)
  • 1