Learn More
A simple seed growing algorithm for estimating scene flow in a stereo setup is presented. Two calibrated and synchronized cameras observe a scene and output a sequence of image pairs. The algorithm simultaneously computes a disparity map between the image pairs and optical flow maps between consecutive images. This, together with calibration data, is an(More)
3D Shape matching is an important problem in computer vision. One of the major difficulties in finding dense correspondences between 3D shapes is related to the topological discrepancies that often arise due to complex kinematic motions. In this paper we propose a shape matching method that is robust to such changes in topology. The algorithm starts from a(More)
In many retrieval, object recognition, and wide-baseline stereo methods, correspondences of interest points (distinguished regions) are commonly established by matching compact descriptors such as SIFTs. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure(More)
The knowledge of stereo matching algorithm properties and behaviour under varying conditions is crucial for the selection of a proper method for the desired application. In this paper we study the behaviour of four representative matching algorithms under varying signal-to-noise ratio in six types of error statistics. The errors are focused on basic(More)
In this paper we propose and study a simple trinocular rectification method in which stratification to projective and affine components gives the rectifying homographies in a closed form. The class of trinocular rectifications which has 6 DOF is parametrized by an independent set of parameters with a geometric meaning. This offers the possibility to(More)
In stereo literature, there is no standard method for evaluating algorithms for semi-dense stereo matching. Moreover , existing evaluations for dense methods require a fixed parameter setting for the tested algorithms. In this paper, we propose a method that overcomes these drawbacks and still is able to compare algorithms based on a simple numerical value,(More)
Segmentation of windowpanes in images of building façades is formulated as a task of maximum aposteriori probability labeling. Assuming orthographic rectification of the image, the windowpanes are always axis-parallel rectangles of relatively low variability in appearance. Every image pixel has one of 10 possible labels, and the labels in adjacent pixels(More)
Continuous action recognition is more challenging than isolated recognition because classification and segmentation must be simultaneously carried out. We build on the well known dynamic time warping framework and devise a novel visual alignment technique, namely dynamic frame warping (DFW), which performs isolated recognition based on per-frame(More)