Learn More
A simple seed growing algorithm for estimating scene flow in a stereo setup is presented. Two calibrated and synchronized cameras observe a scene and output a sequence of image pairs. The algorithm simultaneously computes a disparity map between the image pairs and optical flow maps between consecutive images. This, together with calibration data, is an(More)
A simple stereo matching algorithm is proposed that visits only a small fraction of disparity space in order to find a semi-dense disparity map. It works by growing from a small set of correspondence seeds. Unlike in known seed-growing algorithms, it guarantees matching accuracy and correctness, even in the presence of repetitive patterns. This success is(More)
3D Shape matching is an important problem in computer vision. One of the major difficulties in finding dense correspondences between 3D shapes is related to the topological discrepancies that often arise due to complex kinematic motions. In this paper we propose a shape matching method that is robust to such changes in topology. The algorithm starts from a(More)
The combination of range sensors with color cameras can be very useful for robot navigation, semantic perception, manipulation, and telepresence. Several methods of combining range- and color-data have been investigated and successfully used in various robotic applications. Most of these systems suffer from the problems of noise in the range-data and(More)
Stereo matching is a challenging problem, especially in the presence of noise or of weakly textured objects. Using temporal information in a binocular video sequence to increase the discriminability for matching has been introduced in the recent past, but all the proposed methods assume either constant disparity over time, or small object motions, which is(More)
In many retrieval, object recognition, and wide-baseline stereo methods, correspondences of interest points (distinguished regions) are commonly established by matching compact descriptors such as SIFTs. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure(More)
The knowledge of stereo matching algorithm properties and behaviour under varying conditions is crucial for the selection of a proper method for the desired application. In this paper we study the behaviour of four representative matching algorithms under varying signal-to-noise ratio in six types of error statistics. The errors are focused on basic(More)
Segmentation of windowpanes in images of building façades is formulated as a task of maximum aposteriori probability labeling. Assuming orthographic rectification of the image, the windowpanes are always axis-parallel rectangles of relatively low variability in appearance. Every image pixel has one of 10 possible labels, and the labels in adjacent pixels(More)
In stereo literature, there is no standard method for evaluating algorithms for semi-dense stereo matching. Moreover, existing evaluations for dense methods require a fixed parameter setting for the tested algorithms. In this paper, we propose a method that overcomes these drawbacks and still is able to compare algorithms based on a simple numerical value,(More)
In this paper we propose and study a simple trinocular rectification method in which stratification to projective and affine components gives the rectifying homographies in a closed form. The class of trinocular rectifications which has 6 DOF is parametrized by an independent set of parameters with a geometric meaning. This offers the possibility to(More)