Jan C. Schöning

Learn More
The Arabidopsis RNA-binding protein AtGRP8 undergoes negative autoregulation at the post-transcriptional level. An elevated AtGRP8 protein level promotes the use of a cryptic 5' splice site to generate an alternatively spliced transcript, as_AtGRP8, retaining the 5' half of the intron with a premature termination codon. In mutants defective in(More)
The RNA binding protein AtGRP7 is part of a circadian slave oscillator in Arabidopsis thaliana that negatively autoregulates its own mRNA, and affects the levels of other transcripts. Here, we identify a novel role for AtGRP7 as a flowering-time gene. An atgrp7-1 T-DNA mutant flowers later than wild-type plants under both long and short days, and(More)
The clock-regulated RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein) influences circadian oscillations of its transcript by negative feedback at the post-transcriptional level. Here we show that site-specific mutation of one conserved arginine to glutamine within the RNA recognition motif impairs binding of recombinant(More)
Circadian clocks, internal timekeepers that generate a daily rhythmicity, help organisms to be prepared for periodic environmental changes of light and temperature. These molecular clocks are transcriptional feedback loops that generate 24-h oscillations in the abundance of clock proteins. For the maintenance of this rhythm inside the core clockwork and for(More)
RNA-binding proteins impact gene expression at the posttranscriptional level by interacting with cognate cis elements within the transcripts. Here, we apply dynamic single-molecule force spectroscopy to study the interaction of the Arabidopsis glycine-rich RNA-binding protein AtGRP8 with its RNA target. A dwell-time-dependent analysis of the single-molecule(More)
Post-transcriptional control makes an important contribution to shaping transcript profiles of circadianly regulated genes. In Arabidopsis thaliana, the clock-regulated glycine-rich RNA-binding protein ATGRP7 oscillates with a 24-h rhythm and transmits the rhythmicity generated by the central oscillator within the cell. ATGRP7 negatively auto-regulates its(More)
Although rhythmic leaf movement in a higher plant was the first physiological process recognised to be under circadian control, our understanding of the molecular drives underlying circadian rhythms in plants is still limited. Genetic screens for mutants impaired with regard to circadian rhythmicity have identified components critical for clock function in(More)
The clock-regulated RNA recognition motif (RRM)-containing protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein) influences the amplitude of its transcript oscillation at the post-transcriptional level. This autoregulation relies on AtGRP7 binding to its own pre-mRNA. The sequence and structural requirements for this interaction are unknown(More)
  • 1