Jan Brezovsky

Learn More
Tunnels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of proteins. Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are instrumental for understanding of structure-function relationships of these proteins, for the design of new(More)
Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization(More)
An enzyme's substrate specificity is one of its most important characteristics. The quantitative comparison of broad-specificity enzymes requires the selection of a homogenous set of substrates for experimental testing, determination of substrate-specificity data and analysis using multivariate statistics. We describe a systematic analysis of the substrate(More)
UNLABELLED The transport of ligands, ions or solvent molecules into proteins with buried binding sites or through the membrane is enabled by protein tunnels and channels. CAVER Analyst is a software tool for calculation, analysis and real-time visualization of access tunnels and channels in static and dynamic protein structures. It provides an intuitive(More)
Enzymes are widely used for the synthesis of pharmaceuticals, agrochemicals, and food additives because they can catalyze enantioselective transformations. Understanding the molecular basis of enzyme–substrate interactions that contribute to enantioselectivity is important for constructing selective enzymes by protein engineering. Up to now, emphasis has(More)
Protein structures contain highly complex systems of voids, making up specific features such as surface clefts or grooves, pockets, protrusions, cavities, pores or channels, and tunnels. Many of them are essential for the migration of solvents, ions and small molecules through proteins, and their binding to the functional sites. Analysis of these structural(More)
Haloalkane dehalogenases catalyze the hydrolysis of carbon-halogen bonds in various chlorinated, brominated and iodinated compounds. These enzymes have a conserved pair of halide-stabilizing residues that are important in substrate binding and stabilization of the transition state and the halide ion product via hydrogen bonding. In all previously known(More)
Substrate specificity is a key feature of enzymes determining their applicability in biomaterials and biotechnologies. Experimental testing of activities with novel substrates is a time-consuming and inefficient process, typically resulting in many failures. Here, we present an experimentally validated in silico method for the discovery of novel substrates(More)
We emphasize the importance of dynamics and hydration for enzymatic catalysis and protein design by transplanting the active site from a haloalkane dehalogenase with high enantioselectivity to nonselective dehalogenase. Protein crystallography confirms that the active site geometry of the redesigned dehalogenase matches that of the target, but its(More)