Jan Bart Ten Hove

Learn More
Two genes homologous to lpxL and lpxM from Escherichia coli and other gram-negative bacteria, which are involved in lipid A acyloxyacylation, were identified in Neisseria meningitidis strain H44/76 and insertionally inactivated. Analysis by tandem mass spectrometry showed that one of the resulting mutants, termed lpxL1, makes lipopolysaccharide (LPS) with(More)
Lipopolysaccharide (LPS) is one of the major constituents of the gram-negative bacterial cell envelope. Its endotoxic activity causes the relatively high reactogenicity of whole-cell vaccines. Several bacteria harbor LPS-modifying enzymes that modulate the endotoxic activity of the LPS. Here we evaluated whether two such enzymes, i.e., PagP and PagL, could(More)
The structure of unknown compounds present in herbal products was elucidated using liquid chromatography-electrospray ionization-mass spectrometry, direct-infusion electrospray ionization-mass spectrometry, and nuclear magnetic resonance. Compounds 1-3 were identified as sildenafil analogues, 1 bearing an N-ethylpiperazine moiety instead of an(More)
Autotransporters constitute a relatively simple secretion system in Gram-negative bacteria, depending for their translocation across the outer membrane only on a C-terminal translocator domain. We have studied a novel autotransporter serine protease, designated NalP, from Neisseria meningitidis strain H44/76, featuring a lipoprotein motif at the signal(More)
Formaldehyde is frequently used to inactivate, stabilize, or immobilize proteins. The treatment results in a large variety of chemical modifications in proteins, such as the formation of methylol groups, Schiff bases, and methylene bridges. The purpose of the present study was to identify the stable formaldehyde-induced modifications in a small protein.(More)
We have investigated the potential of capillary-column-switching liquid chromatography coupled to tandem mass spectrometry (cLC-MS-MS) for the quantitative on-line trace analysis of target compounds in aqueous solutions. The technical design of the nano-scale cLC system developed at our Institute for peptide and protein identification has been tested and(More)
The hierarchically controlled synthesis and characterization of self-assembling macromolecules and particles are key to explore and exploit new nanomaterials. Here we present a versatile strategy for constructing particle-in-a-box-in-a-box systems by assembling dendrimer-encapsulated gold nanoparticles (DENs) into dendrimicelles. This is realized by(More)
Hydrogels can be synthesized with most of the properties needed for biomaterials applications. Soft, wettable, and highly permeable gels with a practically unlimited breadth of chemical functionalities are routinely made in the laboratory. However, the ability to make highly elastic and durable hydrogels remains limited. Here we describe an approach to(More)
Formaldehyde is a well known cross-linking agent that can inactivate, stabilize, or immobilize proteins. The purpose of this study was to map the chemical modifications occurring on each natural amino acid residue caused by formaldehyde. Therefore, model peptides were treated with excess formaldehyde, and the reaction products were analyzed by liquid(More)
Biconcave thin water layers represent a template to induce organization of supramolecular structures into ordered monolayers. Here we show how micelles form extensive micrometer-sized pseudo-2D superstructures that reveal size-sorting and geometric pattern formation, as shown by cryo-transmission electron microscopy (cryoTEM). Electron-rich gold particles(More)