Jan A. Melkebeek

Learn More
When a "classical" current control scheme is applied, the line current of a boost power-factor-correction (PFC) converter leads the line voltage, resulting in a nonunity fundamental displacement power factor and in important zero-crossing distortion in applications with a high line frequency (e.g., 400-Hz power systems on commercial aircraft). To resolve(More)
Whereas power-factor-correction (PFC) converters for low-power ranges (less than 250 W) are commonly designed for operation in the discontinuous conduction mode, converters for higher power levels are operated in the continuous conduction mode. Nevertheless, when these converters are operated at reduced power, discontinuous conduction mode will appear(More)
When power-factor correction (PFC) converters designed for operation in continuous-conduction mode (CCM) at full power are operated at reduced load, operation in discontinuous-conduction mode (DCM) occurs in a zone that is close to the crossover of the line voltage. This zone will gradually expand with decreasing load to finally encompass the entire line(More)
Flying-capacitor converters (FCCs), like most multilevel converter topologies, require a balancing mechanism of the capacitor voltages. FCCs feature natural voltage balancing when a special modulation technique is used. The classic methods, such as phase-shifted pulse width modulation (PS-PWM), result in very slow balancing for some duty-ratio ranges.(More)
This paper proposes a method to obtain the rotor position of switched reluctance motors (SRMs) by means of voltage measurements. It is shown that the combination of a motor and a power-electronic converter defines a resonant circuit, comprising the motor phase inductances and the parasitic capacitance of converter switches, power cables, and motor phase(More)
The operation of Brushless DC permanent-magnet machines requires information of the rotor position to steer the semiconductor switches of the power-supply module which is commonly referred to as Brushless Commutation. Different sensorless techniques have been proposed to estimate the rotor position using current and voltage measurements of the machine.(More)
A modeling technique for rate-independent ~quasistatic! scalar magnetic hysteresis is presented, using neural networks. Based on the theory of dynamic systems and the wiping-out and congruency properties of the classical scalar Preisach hysteresis model, the choice of a feed-forward neural network model is motivated. The neural network input parameters at(More)
A small signal model which employs two different magnetizing reactances to incorporate the effect of main flux saturation on induction machine dynamic response is presented. Three different types of experiments which confirm the improved accuracy of the saturated model are discussed, and the model is used to examine the effect of saturation on dynamic(More)
With the standstill frequency-response (SSFR) test, accurate electrical-machine models can be identified. However, it can be a time-consuming method, particularly in case the machine has to be identified at low frequencies. To shorten the required time for identification, in this paper, the response on a broadband signal is measured, resulting in a(More)
This paper deals with the seamless integration of high-frequency test voltages for IPMSM rotor-position estimation in the discrete-time current-controller with fixed sampling frequency of a voltage-source converter. Pulsed test voltages are used that don't interfere with the current samples taken to control the phase currents. For this purpose, an(More)