Jamilur R. Talukder

Learn More
We have characterized the Na-glutamine cotransporter in the rabbit intestinal crypt cell brush border membrane vesicles (BBMV). Substrate specificity experiments showed that crypt cell glutamine uptake is mediated by system N. Real-time PCR experiments showed that SN2 (SLC38A5) mRNA is more abundant in crypt cells compared with SN1 (SLC38A3), indicating(More)
Glutamine, the primary metabolic fuel for the mammalian small intestinal enterocytes, is primarily assimilated by Na-amino acid cotransporters. Although Na-solute cotransport has been shown to exist in the brush border membrane (BBM) of the absorptive villus cells, the identity of Na-glutamine cotransport in rabbit small intestinal villus cells was unknown.(More)
Although both Kcnn4c and Kcnma1 channels are present on colonic mucosal membranes, only Kcnma1 has been suggested to mediate K(+) secretion in the colon. Therefore, studies were initiated to investigate the relative roles of Kcnn4c and Kcnma1 in mediating aldosterone (Na-free diet)-induced K(+) secretion. Mucosal to serosal (m-s), serosal to mucosal (s-m),(More)
In a rabbit model of chronic intestinal inflammation, we previously demonstrated inhibition of neutral Na-amino acid cotransport. The mechanism of the inhibition was secondary to a decrease in the affinity for amino acid rather than the number of cotransporters. Since leukotriene (LT)D4 is known to be elevated in enterocytes during chronic intestinal(More)
Various immunoinflammatory cytokines are produced during chronic intestinal inflammation, which inhibits Na(+)-glucose cotransport (SGLT1) in villus cells. Lactoferrin (Lf), abundantly present in colostrum, is a multifunctional glycoprotein that is absorbed by receptor-mediated transcytosis in humans and animals and has been shown to exert anti-inflammatory(More)
Glutamine (Gln), a preferred fuel source for enterocytes, is critical for intestinal epithelial cell integrity and barrier function. Chronic enteritis inhibits apical Na(+)-Gln cotransport. It is not known whether inflammatory cytokines that are secreted during inflammation inhibit Na(+)-Gln cotransport. Thus, this study aimed to examine whether TNF-α would(More)
Previous in vivo studies suggest that constitutive nitric oxide (cNO) can regulate Na- glucose cotransport (SGLT1) and Na-H exchange (NHE3) in rabbit intestinal villus cells. Whether these two primary Na absorbing pathways are directly regulated by cNO and the mechanisms of this regulation in the enterocyte is not known. Thus nontransformed rat small(More)
Talukder JR, Kekuda R, Saha P, Sundaram U. Mechanism of leukotriene D4 inhibition of Na-alanine cotransport in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 295: G1–G6, 2008. First published April 24, 2008; doi:10.1152/ajpgi.00498.2007.—In a rabbit model of chronic intestinal inflammation, we previously demonstrated inhibition of(More)
BACKGROUND In the chronically inflamed rabbit small intestine, brush border membrane (BBM) Na-glutamine co-transport is inhibited in villus cells (mediated by B0AT1), while it is stimulated in crypt cells (mediated by SN2/SNAT5). How mast cells, known to be enhanced in the chronically inflamed intestine, may regulate B0AT1 in villus and SN2/SNAT5 in crypt(More)
  • 1