Jamie Lass

Learn More
Habituation is the simplest form of learning, but we know little about the transcriptional mechanisms that encode long-term habituation memory. A key obstacle is that habituation is relatively stimulus-specific and is thus encoded in small sets of neurons, providing poor signal/noise ratios for transcriptional analysis. To overcome this obstacle, we have(More)
The Egr family of transcription factors plays a key role in long-term plasticity and memory in a number of vertebrate species. Here we identify and characterize ApEgr (GenBank: KC608221), an Egr homolog in the marine mollusk Aplysia californica. ApEgr codes for a predicted 593-amino acid protein with the highly conserved trio of zinc-fingered domains in the(More)
We used Aplysia californica to compare the transcriptional changes evoked by long-term sensitization training and by a treatment meant to mimic this training, in vivo exposure to serotonin. We focused on 5 candidate plasticity genes which are rapidly up-regulated in the Aplysia genus by in vivo serotonin treatment, but which have not yet been tested for(More)
  • 1