Learn More
As any child knows, the first step in counting is summing up individual elements, yet the brain mechanisms responsible for this process remain obscure. Here we show, for the first time, that a population of neurons in the lateral intraparietal area of monkeys encodes the total number of elements within their classical receptive fields in a graded fashion,(More)
A wealth of human and animal research supports common neural processing of numerical and temporal information. Here we test whether adult humans spontaneously encode number and time in a paradigm similar to those previously used to test the mode-control model in animals. Subjects were trained to classify visual stimuli that varied in both number and(More)
Patients with Parkinson's disease (PD) may experience impulse control disorders (ICDs) when on dopamine agonist therapy for their motor symptoms. In the last few years, a rapid growth of interest for the recognition of these aberrant behaviors and their neurobiological correlates has occurred. Recent advances in neuroimaging are helping to identify the(More)
Humans and animals appear to share a similar representation of number as an analog magnitude on an internal, subjective scale. Neurological and neurophysiological data suggest that posterior parietal cortex (PPC) is a critical component of the circuits that form the basis of numerical abilities in humans. Patients with parietal lesions are impaired in their(More)
  • 1