Learn More
Human CYP2J2 is abundant in heart and active in the biosynthesis of epoxyeicosatrienoic acids (EETs); however, the functional role of this P450 and its eicosanoid products in the heart remains unknown. Transgenic mice with cardiomyocyte-specific overexpression of CYP2J2 were generated. CYP2J2 transgenic (Tr) mice have normal heart anatomy and basal(More)
Cytochrome P450 epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) which are converted to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (Ephx2, sEH). To examine the functional role of sEH in the heart, mice with targeted disruption of the Ephx2 gene were studied. Hearts from sEH null mice have undetectable(More)
RATIONALE Helper CD4(+) T cell subsets, including IL-9- and IL-10-producing T helper cell type 9 (Th9) cells, exist under certain inflammatory conditions. Cyclooxygenase (COX)-1 and COX-2 play important roles in allergic lung inflammation and asthma. It is unknown whether COX-derived eicosanoids regulate Th9 cells during allergic lung inflammation. (More)
The molecular basis for demyelination induced by the neurotropic murine coronavirus JHM (JHMV or MHV4) is unknown. We have attempted to explore this issue by using neutralizing monoclonal antibodies specific for the major JHMV glycoprotein (E2) to select sets of neutralization resistant (NR) antigenic variant viruses. Monoclonal antibodies J.7.2 and J.2.2(More)
Cytochrome P450 (CYP) epoxygenases CYP2C8 and CYP2J2 generate epoxyeicosatrienoic acids (EETs) from arachidonic acid. Mice with expression of CYP2J2 in cardiomyocytes (αMHC-CYP2J2 Tr) or treated with synthetic EETs have increased functional recovery after ischemia/reperfusion (I/R); however, no studies have examined the role of cardiomyocyte- vs.(More)
CYP2J2 is abundant in cardiomyocytes and is involved in the metabolism of arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs), which affect multiple cell functions. In this study, we investigated the effect of overexpression of CYP2J2 on cardiac L-type Ca2+ currents (ICa) in adult transgenic mice. Cardiac-specific overexpression of CYP2J2 was achieved(More)
CYP2J2 is abundant in cardiovascular tissue and active in the metabolism of arachidonic acid to eicosanoids that possess potent anti-inflammatory, vasodilatory, and fibrinolytic properties. We cloned and sequenced the entire CYP2J2 gene (approximately 40.3 kb), which contains nine exons and eight introns. We then sequenced the CYP2J2 exons and intron-exon(More)
A cDNA encoding a new cytochrome P450 was isolated from a mouse brain library. Sequence analysis reveals that this 1,958-base pair cDNA encodes a 57-58-kDa 502-amino acid polypeptide that is 70-91% identical to CYP2J subfamily P450s and is designated CYP2J9. Recombinant CYP2J9 was co-expressed with NADPH-cytochrome P450 oxidoreductase (CYPOR) in Sf9 cells(More)
Human soluble epoxide hydrolase (hsEH) metabolizes a variety of epoxides to the corresponding vicinal diols. Arachidonic and linoleic acid epoxides are thought to be endogenous substrates for hsEH. Enzyme activity in humans shows high interindividual variation (e.g., 500-fold in liver) suggesting the existence of regulatory and/or structural gene(More)
We have reported that epoxyeicosatrienoic acids (EETs), the cytochrome P450 (CYP) epoxygenase metabolites of arachidonic acid (AA), are potent sarcolemmal ATP-sensitive K+ (KATP) channel activators. However, activation of cardiac and vascular KATP channels by endogenously produced EETs under physiological intracellular conditions has not been demonstrated(More)