Jamie A. Davies

Learn More
The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb, http://www.guidetopharmacology.org) provides expert-curated molecular interactions between successful and potential drugs and their targets in the human genome. Developed by the International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological Society (BPS), this resource, and its(More)
A novel neurotrophic factor named Persephin that is approximately 40% identical to glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) has been identified using degenerate PCR. Persephin, like GDNF and NTN, promotes the survival of ventral midbrain dopaminergic neurons in culture and prevents their degeneration after 6-hydroxydopamine(More)
The segmented pattern of peripheral spinal nerves in higher vertebrates is generated by interactions between nerve cells and somites. Neural crest cells, motor axons, and sensory axons grow exclusively through anterior-half sclerotome. In chick embryos, posterior cells bind the lectins peanut agglutinin (PNA) and Jacalin. When liposomes containing somite(More)
Glial cell line-derived neurotrophic factor, GDNF, is vital to the development and maintenance of neural tissues; it promotes survival of sympathetic, parasympathetic and spinal motor neurons during development, protects midbrain dopaminergic neurons from apoptosis well enough to be a promising treatment for Parkinson's disease, and controls renal and(More)
Wt1 regulates the epithelial-mesenchymal transition (EMT) in the epicardium and the reverse process (MET) in kidney mesenchyme. The mechanisms underlying these reciprocal functions are unknown. Here, we show in both embryos and cultured cells that Wt1 regulates Wnt4 expression dichotomously. In kidney cells, Wt1 recruits Cbp and p300 as coactivators; in(More)
Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of(More)
Branched epithelia determine the anatomy of many mammalian organs; understanding how they develop is therefore an important element of understanding organogenesis as a whole. In recent years, much progress has been made in identifying paracrine factors that regulate branching morphogenesis in many organs, but comparatively little attention has been paid to(More)
Urine is produced in the kidney by excretory nephrons and is drained by a tree-like system of collecting ducts to the ureter. The collecting ducts develop by arborisation of an initially unbranched epithelial rudiment, the ureteric bud, which ramifies through the surrounding mesenchyme and induces the formation of nephrons by mesenchyme-to-epithelial(More)
Formation of branching epithelial trees from unbranched precursors is a common process in animal organogenesis. In humans, for example, this process gives rise to the airways of the lungs, the urine-collecting ducts of the kidneys and the excretory epithelia of the mammary, prostate and salivary glands. Branching in these different organs, and in different(More)
In late 2004, an International Consortium of research groups were charged with the task of producing a high-quality molecular anatomy of the developing mammalian urogenital tract (UGT). Given the importance of these organ systems for human health and reproduction, the need for a systematic molecular and cellular description of their developmental programs(More)