#### Filter Results:

#### Publication Year

2001

2015

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

—This letter proposes a novel extremely low frequency (ELF) radar for major oil deposits. Using our recently developed whole-Earth electromagnetic wave propagation model based upon the finite-difference time-domain method, we have determined that detection of the radial (vertical) component of the scattered-field provides a sensitive means to detect oil… (More)

—This letter proposes a novel extremely low frequency (ELF) radar for localized D-region (altitude < 95 km) ionospheric anomalies that have been generated by natural geophysical processes. The proposed system would use the former U.S. Navy Wisconsin Transmitting Facility as a distant well-characterized impulsive ELF source. Sample calculations that… (More)

—This paper reports the application of an efficient finite-difference time-domain (FDTD) algorithm to model impulsive extremely low frequency (ELF) propagation within the entire Earth-ionosphere cavity. Periodic boundary conditions are used in conjunction with a three-dimensional latitude-longitude FDTD space lattice which wraps around the complete… (More)

—This letter reports the initial application of the finite-difference time-domain (FDTD) method to model extremely low-frequency (ELF) propagation around the entire Earth. Periodic boundary conditions are used in conjunction with a variable-cell two-dimensional TM FDTD grid, which wraps around the complete Earth sphere. The model is verified by numerical… (More)

- Jamesina J Simpson, Ross P Heikes, Allen Taflove
- 2006

—This paper reports the first application of an optimized geodesic, three-dimensional (3-D) finite-difference time-domain (FDTD) grid to model impulsive, extremely low-frequency (ELF) electromagnetic wave propagation within the entire Earth-ionosphere cavity. This new model, which complements our previously reported efficient 3-D latitude-longitude grid, is… (More)

[1] We report what we believe to be the first three-dimensional computational solution of the full-vector Maxwell's equations for hypothesized pre-seismic electromagnetic phenomena propagated within the entire Earth-ionosphere cavity. Periodic boundary conditions are used in conjunction with a variable-cell finite-difference time-domain (FDTD) space lattice… (More)

—This letter reports the initial application of a geodesic finite-difference time-domain (FDTD) grid to model impulsive extremely low frequency electromagnetic wave propagation about the Earth sphere. The two-dimensional transverse-magnetic grid is comprised entirely of hexagonal cells, except for a small fixed number of pentagonal cells needed for grid… (More)

—Wave propagation at the bottom of the electromagnetic spectrum (below 300 kHz) in the Earth-ionosphere waveguide system has been an interesting and important area of investigation for the last four decades. Such wave propagation is characterized by complex phenomena involving nonhomogeneous and anisotropic media, and can result in resonances of the entire… (More)

—A new three-dimensional finite-difference time-domain (FDTD) numerical model is proposed herein to simulate electromagnetic wave propagation in an anisotropic magnetized cold plasma medium. Plasma effects contributed by electrons, positive, and negative ions are considered in this model. The current density vectors are collocated at the positions of the… (More)

Advances in computing technologies in recent decades have provided a means of generating and performing highly sophisticated computational simulations of electromagnetic phenomena. In particular, just after the turn of the twenty-first century, improvements to computing infrastructures provided for the first time the opportunity to conduct advanced,… (More)