Learn More
We present the derivation of a new molecular mechanical force field for simulating the structures, conformational energies, and interaction energies of proteins, nucleic acids, and many related organic molecules in condensed phases. This effective two-body force field is the successor to the Weiner et al. force field and was developed with some of the same(More)
Molecular mechanics models have been applied extensively to study the dynamics of proteins and nucleic acids. Here we report the development of a third-generation point-charge all-atom force field for proteins. Following the earlier approach of Cornell et al., the charge set was obtained by fitting to the electrostatic potentials of dipeptides calculated(More)
We describe here a general Amber force field (GAFF) for organic molecules. GAFF is designed to be compatible with existing Amber force fields for proteins and nucleic acids, and has parameters for most organic and pharmaceutical molecules that are composed of H, C, N, O, S, P, and halogens. It uses a simple functional form and a limited number of atom(More)
We have developed a new-generation Amber united-atom force field for simulations involving highly demanding conformational sampling such as protein folding and protein-protein binding. In the new united-atom force field, all hydrogens on aliphatic carbons in all amino acids are united with carbons except those on Calpha. Our choice of explicit(More)
We present the first nonadditive molecular dynamics simulation of organic liquids, studying the structure and energetics of methanol and N-methylacetamide. Beginning with an additive potential that reproduces the structure and energetics of these liquids quite well, we have shown that one can simply reduce the atomic charges by a scale factor in the range(More)
  • 1