James S. McGrew

Learn More
This paper presents vehicle models and test flight results for an autonomous fixed-wing aircraft with the capability to take off, hover, transition to and from level-flight, and perch on a vertical landing platform. These maneuvers are all demonstrated in the highly space constrained environment of the Real-time indoor Autonomous Vehicle test ENvironment(More)
This paper and video present the components and flight tests of an indoor, multi-vehicle testbed that was developed to study long duration UAV missions in a controlled environment. This testbed is designed to use real hardware to examine research questions related to single- and multi-vehicle health management, such as vehicle failures, refueling, and(More)
Unmanned Aircraft Systems (UAS) have the potential to perform many of the dangerous missions currently flown by manned aircraft. Yet, the complexity of some tasks, such as air combat, have precluded UAS from successfully carrying out these missions autonomously. This paper presents a formulation of the one-on-one air combat maneuvering problem and an(More)
The real-time indoor autonomous vehicle test environment (RAVEN) at MIT's Aerospace Controls Laboratory is home to a diverse fleet of aircraft, from a styrofoam and cellophane dragonfly to a set of quadrotor Draganflyer helicopters. The helicopters are used primarily for swarm and health management research. Alongside these machines is a set of more(More)
  • 1