James Robert Byrnes

Learn More
Venous thrombi, fibrin- and rbc-rich clots triggered by inflammation and blood stasis, underlie devastating, and sometimes fatal, occlusive events. During intravascular fibrin deposition, rbc are thought to become passively trapped in thrombi and therefore have not been considered a modifiable thrombus component. In the present study, we determined that(More)
Factor XIII(a) [FXIII(a)] stabilizes clots and increases resistance to fibrinolysis and mechanical disruption. FXIIIa also mediates red blood cell (RBC) retention in contracting clots and determines venous thrombus size, suggesting FXIII(a) is a potential target for reducing thrombosis. However, the mechanism by which FXIIIa retains RBCs in clots is(More)
OBJECTIVE Individuals with elevated prothrombin, including those with the prothrombin G20210A mutation, have increased risk of venous thrombosis. Although these individuals do not have increased circulating prothrombotic biomarkers, their plasma demonstrates increased tissue factor-dependent thrombin generation in vitro. The objectives of this study were to(More)
Hyperlipidemia affects millions of people worldwide and is a major risk factor for cardiovascular disease. People with hyperlipidemia have elevated levels of serum cholesterol and an increased risk of thrombosis. Studies have suggested that oxidized lipoproteins, such as oxidized low-density lipoprotein (oxLDL), contribute to the development of a(More)
Arterial and venous thromboses are major contributors to coagulation-associated morbidity and mortality. Greater understanding of mechanisms leading to thrombus formation and stability is expected to lead to improved treatment strategies. Factor XIII (FXIII) is a transglutaminase found in plasma and platelets. During thrombosis, activated FXIII cross-links(More)
Deep vein thrombosis and pulmonary embolism, collectively termed venous thromboembolism (VTE), affect over 1 million Americans each year. VTE is triggered by inflammation and blood stasis leading to the formation of thrombi rich in fibrin and red blood cells (RBCs). However, little is known about mechanisms regulating fibrin and RBC incorporation into(More)
Coagulation factor XIIIa (FXIIIa) is a transglutaminase that covalently cross-links fibrin and other proteins to fibrin to stabilize blood clots and reduce blood loss. A clear mechanism to describe the physiological inactivation of FXIIIa has been elusive. Here, we show that plasmin can cleave FXIIIa in purified systems and in blood. Whereas zymogen FXIII(More)
Cardiovascular disease is the leading cause of death and disability worldwide. Among cardiovascular causes of death, venous thrombosis (VT) is ranked third most common in the world. Venous thrombi have high red blood cell and fibrin content; however, the pathophysiologic mechanisms that contribute to venous thrombus composition and stability are still(More)
Coagulation transglutaminase factor XIII (FXIII) exists in circulation as heterotetrameric proenzyme FXIII-A2B2 Effectively all FXIII-A2B2 circulates bound to fibrinogen, and excess FXIII-B2 circulates in plasma. The motifs that mediate interaction of FXIII-A2B2 with fibrinogen have been elusive. We recently detected reduced binding of FXIII-A2B2 to murine(More)