Learn More
In humans, cytoskeletal dystrophin and muscle LIM protein (MLP) gene mutations can cause dilated cardiomyopathy, yet these mutations may have different effects in mice, owing to increased accumulation of other, compensatory cytoskeletal proteins. Consequently, we characterized left-ventricular (LV) morphology and function in vivo using high-resolution(More)
Sarcoplasmic reticulum (SR) calcium pump function requires a high local ATP/ADP ratio, which can be maintained by direct nucleotide channelling from mitochondria, and by SR-bound creatine kinase (CK)-catalysed phosphate-transfer from phosphocreatine. We hypothesized that SR calcium uptake supported by mitochondrial direct nucleotide channelling, but not(More)
To determine whether the effects of fatty acids on the diabetic heart during ischemia involve altered glycolytic ATP and proton production, we measured energetics and intracellular pH (pH(i)) by using (31)P NMR spectroscopy plus [2-(3)H]glucose uptake in isolated rat hearts. Hearts from 7-wk streptozotocin diabetic and control rats, perfused with buffer(More)
Local control of ATP/ADP ratio is essential for efficient functioning of cellular ATPases. Since creatine kinase (CK) activity and mitochondrial content are reduced in heart failure (HF), and cardiomyocyte ultrastructure is altered, we hypothesized that these changes may affect the local energetic control of two major cardiac ATPases, the sarcoplasmic(More)
AIMS The myofibrillar and nuclear compartments in cardiomyocytes are known to be sensitive to extracellular mechanical stimuli. Recently, we have shown that alterations in the mitochondrial ionic balance in cells in situ are associated with considerably increased mitochondrial volume. Theoretically, this swelling of mitochondria could impose mechanical(More)
AMP-activated protein kinase (AMPK) plays an important role in controlling energy homeostasis and is envisioned as a promising target to treat metabolic disorders. In the heart, AMPK is involved in short-term regulation and in transcriptional control of proteins involved in energy metabolism. Here, we investigated whether deletion of AMPKalpha2, the main(More)
Mutation of cytoskeletal protein genes results in abnormal protein function and causes cardiomyopathy. We hypothesised that cardiac levels of cytoskeletal proteins, such as dystrophin, desmin and muscle LIM protein (MLP), would be altered during remodelling caused by myocardial infarction (MI). We measured left-ventricular morphology, function and(More)
  • 1