Learn More
Protein-protein interaction (PPI) maps provide insight into cellular biology and have received considerable attention in the post-genomic era. While large-scale experimental approaches have generated large collections of experimentally determined PPIs, technical limitations preclude certain PPIs from detection. Recently, we demonstrated that yeast PPIs can(More)
Artifact detection (AD) techniques minimize the impact of artifacts on physiologic data acquired in critical care units (CCU) by assessing quality of data prior to clinical event detection (CED) and parameter derivation (PD). This methodological review introduces unique taxonomies to synthesize over 80 AD algorithms based on these six themes: 1) CCU; 2)(More)
Protein-protein interactions (PPIs) play a critical role in many cellular functions. A number of experimental techniques have been applied to discover PPIs; however, these techniques are expensive in terms of time, money, and expertise. There are also large discrepancies between the PPI data collected by the same or different techniques in the same(More)
The quality of automated real-time critical care monitoring is impacted by the degree of signal artifact present in clinical data. This is further complicated when different clinical rules applied for disease detection require source data at different frequencies and different signal quality. This paper proposes a novel multidimensional framework based on(More)
It is well known that using random RNA/DNA sequences for SELEX experiments will generally yield low-complexity structures. Early experimental results suggest that having a structurally diverse library, which, for instance, includes high-order junctions, may prove useful in finding new functional motifs. Here, we develop two computational methods to generate(More)
BACKGROUND Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing alpha-helices, beta-strands, and non-regular structures) from(More)
Usher syndrome is the leading cause of genetic deaf-blindness. Monoallelic mutations in PDZD7 increase the severity of Usher type II syndrome caused by mutations in USH2A and GPR98, which respectively encode usherin and GPR98. PDZ domain-containing 7 protein (PDZD7) is a paralog of the scaffolding proteins harmonin and whirlin, which are implicated in Usher(More)
A goal of the post-genomics era has been to elucidate a detailed global map of protein-protein interactions (PPIs) within a cell. Here, we show that the presence of co-occurring short polypeptide sequences between interacting protein partners appears to be conserved across different organisms. We present an algorithm to automatically generate PPI prediction(More)
This paper presents a moving average method for estimating and removing electrocardiogram (ECG) artifact in surface electromyography (sEMG) recordings. This method does not require an ECG-only recording (e.g., with muscles relaxed), which is often required by other methods. The moving average method is compared to a common template subtraction method using(More)
Myelinated axons are organized into distinct subcellular and molecular regions. Without proper organization, electrical nerve conduction is delayed, resulting in detrimental physiological outcomes. One such region is the paranode where axo-glial septate junctions act as a molecular fence to separate the sodium (Na+) channel-enriched node from the potassium(More)