James R. Friend

Learn More
We exploit large accelerations associated with surface acoustic waves to drive an extraordinary fluid jetting phenomena. Laterally focusing the acoustic energy to a small region beneath a drop placed on the surface causes rapid interfacial destabilization. Above a critical Weber number We, an elongated jet forms for drops with dimensions greater than the(More)
Polydimethylsiloxane (PDMS) is nearly ubiquitous in microfluidic devices, being easy to work with, economical, and transparent. A detailed protocol is provided here for using PDMS in the fabrication of microfluidic devices to aid those interested in using the material in their work, with information on the many potential ways the material may be used for(More)
A rapid particle concentration method in a sessile droplet has been developed using asymmetric surface acoustic wave (SAW) propagation on a substrate upon which the droplet is placed. Due to the asymmetry in the SAW propagation, azimuthal bulk liquid recirculation (acoustic streaming) is generated. Once the local particle concentration is sufficiently high(More)
This article reviews acoustic microfluidics: the use of acoustic fields, principally ultrasonics, for application in microfluidics. Although acoustics is a classical field, its promising, and indeed perplexing, capabilities in powerfully manipulating both fluids and particles within those fluids on the microscale to nanoscale has revived interest in it. The(More)
We demonstrate the possibility of producing regular, long-range, spatially ordered polymer patterns without requiring the use of physical or chemical templating through the interfacial destabilization of a thin polymer film driven by surface acoustic waves (SAWs). The periodicity and spot size of the pattern are observed to be dependent on a single(More)
An effective mechanism for rapid and efficient microfluidic particle trapping and concentration is proposed without requiring any mechanically moving parts. When a voltage beyond the threshold atmospheric ionization value is applied on a sharp electrode tip mounted at an angle above a microfluidic liquid chamber, the bulk electrohydrodynamic air thrust that(More)
The ability to detect microbes, pollens and other microparticles is a critically important ability given the increasing risk of bioterrorism and emergence of antibiotic-resistant bacteria. The efficient collection of microparticles via a liquid water droplet moved by a surface acoustic wave (SAW) device is demonstrated in this study. A fluidic track(More)
We demonstrate a straightforward and rapid atomization process driven by surface acoustic waves that is capable of continuously producing spherical monodispersed submicron poly-ε-caprolactone particle aggregates between 150 and 200 nm, each of which are composed of nanoparticles of 5-10 nm in diameter. The size and morphologies of these particle assemblies(More)
IMPORTANCE OF THE FIELD Since the 1950s, ultrasonic nebulizers have played an important role in pulmonary drug delivery. As the process in which aerosol droplets are generated is independent and does not require breath-actuation, ultrasonic nebulizers, in principle, offer the potential for instantaneously fine-tuning the dose administered to the specific(More)