James R. Downing

Learn More
Although cancer classification has improved over the past 30 years, there has been no general approach for identifying new cancer classes (class discovery) or for assigning tumors to known classes (class prediction). Here, a generic approach to cancer classification based on gene expression monitoring by DNA microarrays is described and applied to human(More)
Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including(More)
Treatment of pediatric acute lymphoblastic leukemia (ALL) is based on the concept of tailoring the intensity of therapy to a patient's risk of relapse. To determine whether gene expression profiling could enhance risk assignment, we used oligonucleotide microarrays to analyze the pattern of genes expressed in leukemic blasts from 360 pediatric ALL patients.(More)
Chromosomal aberrations are a hallmark of acute lymphoblastic leukaemia (ALL) but alone fail to induce leukaemia. To identify cooperating oncogenic lesions, we performed a genome-wide analysis of leukaemic cells from 242 paediatric ALL patients using high-resolution, single-nucleotide polymorphism arrays and genomic DNA sequencing. Our analyses revealed(More)
The INK4a tumor suppressor locus encodes p16INK4a, an inhibitor of cyclin D-dependent kinases, and p19ARF, an alternative reading frame protein that also blocks cell proliferation. Surprisingly, mice lacking p19ARF but expressing functional p16INK4a develop tumors early in life. Their embryo fibroblasts (MEFs) do not senesce and are transformed by oncogenic(More)
Human T cell leukemias can arise from oncogenes activated by specific chromosomal translocations involving the T cell receptor genes. Here we show that five different T cell oncogenes (HOX11, TAL1, LYL1, LMO1, and LMO2) are often aberrantly expressed in the absence of chromosomal abnormalities. Using oligonucleotide microarrays, we identified several gene(More)
The AML1-CBF beta transcription factor is the most frequent target of chromosomal rearrangements in human leukemia. To investigate its normal function, we generated mice lacking AML1. Embryos with homozygous mutations in AML1 showed normal morphogenesis and yolk sac-derived erythropoiesis, but lacked fetal liver hematopoiesis and died around E12.5.(More)
Early T-cell precursor acute lymphoblastic leukaemia (ETP ALL) is an aggressive malignancy of unknown genetic basis. We performed whole-genome sequencing of 12 ETP ALL cases and assessed the frequency of the identified somatic mutations in 94 T-cell acute lymphoblastic leukaemia cases. ETP ALL was characterized by activating mutations in genes regulating(More)
To identify somatic mutations in pediatric diffuse intrinsic pontine glioma (DIPG), we performed whole-genome sequencing of DNA from seven DIPGs and matched germline tissue and targeted sequencing of an additional 43 DIPGs and 36 non-brainstem pediatric glioblastomas (non-BS-PGs). We found that 78% of DIPGs and 22% of non-BS-PGs contained a mutation in(More)
BACKGROUND Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined. The relationships between patterns of mutations and epigenetic phenotypes are not yet clear. METHODS We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome(More)