#### Filter Results:

#### Publication Year

1986

2008

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

The quasigeostrophic model is a simplified geophysical fluid model at asymptotically high rotation rate or at small Rossby number. We consider the quasigeostrophic equation with dissipation under random forcing in bounded domains. We show that global unique solutions exist for appropriate initial data. Unlike the deterministic quasi-geostrophic equation… (More)

Stochastic dynamical systems arise as models for fluid particle motion in geophysical flows with random velocity fields. Escape probability (from a fluid domain) and mean residence time (in a fluid domain) quantify fluid transport between flow regimes of different characteristic motion. We consider a quasigeostrophic meandering jet model with random… (More)

We investigate fluid transport in random velocity fields with unsteady drift. First, we propose to quantify fluid transport between flow regimes of different characteristic motion, by escape probability and mean residence time. We then develop numerical algorithms to solve for escape probability and mean residence time, which are described by backward… (More)

We investigate the nonlocal behavior of passive tracer dispersion with random stopping at various sites in fluids. This kind of dispersion processes is modeled by an integral partial differential equation, i.e., an advection-diffusion equation with a memory term. We have shown the exponential decay of the passive tracer concentration, under suitable… (More)

A nonlinear model of spatially localized interactive neural systems is analyzed in the neighborhood of steady state solutions by computing relaxation spectra which govern the long time approach to steady state activity levels.

- ‹
- 1
- ›