James Patrick Megonigal

Learn More
We examine the carbon balance of North American wetlands by reviewing and synthesizing the published literature and soil databases. North American wetlands contain about 220 Pg C, most of which is in peat. They are a small to moderate carbon sink of about 49 Tg C yr−1, although the uncertainty around this estimate is greater than 100%, with the largest(More)
Increased carbon storage in ecosystems due to elevated CO(2) may help stabilize atmospheric CO(2) concentrations and slow global warming. Many field studies have found that elevated CO(2) leads to higher carbon assimilation by plants, and others suggest that this can lead to higher carbon storage in soils, the largest and most stable terrestrial carbon(More)
The relationship between methane emissions and salinity is not well understood in tidal marshes, leading to uncertainty about the net effect of marsh conservation and restoration on greenhouse gas balance. We used published and unpublished field data to investigate the relationships between tidal marsh methane emissions, salinity, and porewater(More)
Terrestrial ecosystems gain carbon through photosynthesis and lose it mostly in the form of carbon dioxide (CO(2)). The extent to which the biosphere can act as a buffer against rising atmospheric CO(2) concentration in global climate change projections remains uncertain at the present stage. Biogeochemical theory predicts that soil nitrogen (N) scarcity(More)
For decades, ecosystem scientists have used global warming potentials (GWPs) to compare the radiative forcing of various greenhouse gases to determine if ecosystems have a net warming or cooling effect on climate. On a conceptual basis, the continued use of GWPs by the ecological community may be untenable because the use of GWPs requires the implicit(More)
We measured the xylem sap flux in 64-year-old Taxodium distichum (L.) Richard trees growing in a flooded forest using Granier-type sensors to estimate mean canopy stomatal conductance of the stand (G S). Temporal variations in G S were investigated in relation to variation in vapor pressure deficit (D), photosynthetic photon flux density (Q o), and the(More)
Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity(More)
This paper assesses the potential impacts of climate change on the mid-Atlantic coastal (MAC) region of the United States. In order of increasing uncertainty, it is projected that sea level, temperature and streamflow will increase in the MAC region in response to higher levels of atmospheric CO2. A case study for Delaware based on digital elevation models(More)
Coastal populations and wetlands have been intertwined for centuries, whereby humans both influence and depend on the extensive ecosystem services that wetlands provide. Although coastal wetlands have long been considered vulnerable to sea-level rise, recent work has identified fascinating feedbacks between plant growth and geomorphology that allow wetlands(More)
Baldcypress saplings were subjected to two flooding regimes of continuous and periodic inundation for three years to allow comparison of annual ring characteristics. Basal stem discs were examined for the number and nature of intra-annual response features, such as false rings. The formation of latewood was also compared for trees from each flooding regime.(More)