Learn More
Increased carbon storage in ecosystems due to elevated CO(2) may help stabilize atmospheric CO(2) concentrations and slow global warming. Many field studies have found that elevated CO(2) leads to higher carbon assimilation by plants, and others suggest that this can lead to higher carbon storage in soils, the largest and most stable terrestrial carbon(More)
For decades, ecosystem scientists have used global warming potentials (GWPs) to compare the radiative forcing of various greenhouse gases to determine if ecosystems have a net warming or cooling effect on climate. On a conceptual basis, the continued use of GWPs by the ecological community may be untenable because the use of GWPs requires the implicit(More)
Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity(More)
Coastal populations and wetlands have been intertwined for centuries, whereby humans both influence and depend on the extensive ecosystem services that wetlands provide. Although coastal wetlands have long been considered vulnerable to sea-level rise, recent work has identified fascinating feedbacks between plant growth and geomorphology that allow wetlands(More)
We measured the xylem sap flux in 64-year-old Taxodium distichum (L.) Richard trees growing in a flooded forest using Granier-type sensors to estimate mean canopy stomatal conductance of the stand (G S). Temporal variations in G S were investigated in relation to variation in vapor pressure deficit (D), photosynthetic photon flux density (Q o), and the(More)
Terrestrial ecosystems gain carbon through photosynthesis and lose it mostly in the form of carbon dioxide (CO(2)). The extent to which the biosphere can act as a buffer against rising atmospheric CO(2) concentration in global climate change projections remains uncertain at the present stage. Biogeochemical theory predicts that soil nitrogen (N) scarcity(More)
Abiotic global change factors, such as rising atmospheric CO2, and biotic factors, such as exotic plant invasion, interact to alter the function of terrestrial ecosystems. An invasive lineage of the common reed, Phragmites australis, was introduced to North America over a century ago, but the belowground mechanisms underlying Phragmites invasion and(More)
Batch cultures of a lithotrophic Fe(II)-oxidizing bacterium, strain BrT, isolated from the rhizosphere of a wetland plant, were grown in bioreactors and used to determine the significance of microbial Fe(II) oxidation at circumneutral pH and to identify abiotic variables that affect the partitioning between microbial oxidation and chemical oxidation. Strain(More)
Six terrestrial ecosystems in the USA were exposed to elevated atmospheric CO(2) in single or multifactorial experiments for more than a decade to assess potential impacts. We retrospectively assessed soil bacterial community responses in all six-field experiments and found ecosystem-specific and common patterns of soil bacterial community response to(More)
Global change is predicted to promote plant invasions world-wide, reducing biodiversity and ecosystem function. Phenotypic plasticity may influence the ability of introduced plant species to invade and dominate extant communities. However, interpreting differences in plasticity can be confounded by phylogenetic differences in morphology and physiology. Here(More)