Learn More
Here we provide global estimates of the seasonal flux of sediment, on a river-by-river basis, under modern and prehuman conditions. Humans have simultaneously increased the sediment transport by global rivers through soil erosion (by 2.3 +/- 0.6 billion metric tons per year), yet reduced the flux of sediment reaching the world's coasts (by 1.4 +/- 0.3(More)
A new model for predicting the long-term flux of sediment from river basins to the coastal ocean is applied to a global data set of 340 river basins. The model is based on relief, basin area (or, averaged discharge), and basin-averaged temperature. Basin-averaged temperature is determined from basin location (latitude, longitude) and the lapse rate across(More)
We analyze 4000-year flood history of the lower Yellow River and the history of agricultural development in the middle river by investigating historical writings and quantitative time series data of environmental changes in the river basin. Flood dynamics are characterized by positive feedback loops, critical thresholds of natural processes, and abrupt(More)
Human activity is leaving a pervasive and persistent signature on Earth. Vigorous debate continues about whether this warrants recognition as a new geologic time unit known as the Anthropocene. We review anthropogenic markers of functional changes in the Earth system through the stratigraphic record. The appearance of manufactured materials in sediments,(More)
Sedflux 2.0 is the newest version of the Sedflux basin-filling model. Sedflux 2.0 provides a framework within which individual process-response models of disparate time and space resolutions communicate with one another to deliver multigrain-sized sediment load across a continental margin. Version 2.0 introduces a series of new process models, and the(More)
The Magdalena River, a major fluvial system draining most of the Colombian Andes, is a world-class river, in the top 10 in terms of sediment load (approximately 150 MT/yr). In this study, we explore the major natural factors and anthropogenic influences behind the patterns in sediment yield on the Magdalena basin and reconstruct the spatial and temporal(More)
Data and computer simulations are reviewed to help better define the timing and magnitude of human influence on sediment flux--the Anthropocene epoch. Impacts on the Earth surface processes are not spatially or temporally homogeneous. Human influences on this sediment flux have a secondary effect on floodplain and delta-plain functions and sediment(More)
We evaluate the boundary of the Anthropocene geological time interval as an epoch, since it is useful to have a consistent temporal definition for this increasingly used unit, whether the presently informal term is eventually formalized or not. Of the three main levels suggested e an 'early Anthropocene' level some thousands of years ago; the beginning of(More)
Many scientists are making the case that humanity is living in a new geological epoch, the Anthropocene, but there is no agreement yet as to when this epoch began. The start might be defined by a historical event, such as the beginning of the fossil-fueled Industrial Revolution or the first nuclear explosion in 1945. Standard strati-graphic practice,(More)
HydroTrend v.3.0 is a climate-driven hydrological water balance and transport model that simulates water discharge and sediment load at a river outlet, by incorporating drainage basin properties (river networks, hypsometry, relief, reservoirs) together with biophysical parameters (temperature, precipitation, evapo-transpiration, and glacier(More)