Learn More
The survival and well-being of all species requires appropriate physiological responses to environmental and homeostatic challenges. The re- establishment and maintenance of homeostasis entails the coordinated activation and control of neuroendocrine and autonomic stress systems. These collective stress responses are mediated by largely overlapping circuits(More)
Appropriate regulatory control of the hypothalamo-pituitary-adrenocortical stress axis is essential to health and survival. The following review documents the principle extrinsic and intrinsic mechanisms responsible for regulating stress-responsive CRH neurons of the hypothalamic paraventricular nucleus, which summate excitatory and inhibitory inputs into a(More)
Limbic dysfunction and hypothalamo-pituitary-adrenocortical (HPA) axis dysregulation are key features of affective disorders. The following review summarizes our current understanding of the relationship between limbic structures and control of ACTH and glucocorticoid release, focusing on the hippocampus, medial prefrontal cortex and amygdala. In general,(More)
Integration of the hypothalamo-pituitary-adrenal stress response occurs by way of interactions between stress-sensitive brain circuitry and neuroendocrine neurons of the hypothalamic paraventricular nucleus (PVN). Stressors involving an immediate physiologic threat ('systemic' stressors) are relayed directly to the PVN, probably via brainstem(More)
The axonal projections of the ventral subiculum to the bed nucleus of the stria terminalis (BST) were examined in the rat with the anterograde neuronal tracer Phaseolus vulgaris-leucoagglutinin (PHA-L). Axons originating in the ventral subiculum coursed to the BST through either the fimbria-fornix, or a pathway involving the stria terminalis via the(More)
Gene expression microarrays provide a powerful new tool for studying complex processes such as brain aging. However, inferences from microarray data are often hindered by multiple comparisons, small sample sizes, and uncertain relationships to functional endpoints. Here we sought gene expression correlates of aging-dependent cognitive decline, using(More)
GABA and glutamate play a major role in central integration of hypothalamo-pituitary-adrenocortical (HPA) stress responses. Recent work in our group has focused on mechanisms whereby GABAergic and glutamatergic circuits interact with parvocellular paraventricular nucleus (PVN) neurons controlling the HPA axis. GABAergic neurons in the bed nucleus of the(More)
The pattern and time course of brain activation in response to acute swim and restraint stress were examined in the rat by in situ hybridization using complementary RNA probes specific for transcripts encoding the products of the immediate early genes c-fos, c-jun and zif/268. A widespread pattern of c-fos messenger RNA expression was detected in response(More)
Stress represents a complex stimulus to neuroendocrine systems regulating homeostasis. By and large, stress effects are mediated by stress-integrative corticotropin-releasing hormone (CRH) neurons present in the medial parvocellular division of the hypothalamic paraventricular nucleus (PVN). These neurons summate a large variety of neuronal and hormonal(More)
The optic tectum is the major synaptic target of retinal axons in birds. In the chick, retinal ganglion cell axons enter the optic tectum through a superficial lamina (the stratum opticum), extended branches into deeper laminae, and arborize in specific "retinorecipient" laminae, where they form synapses. Studies using an organotypic culture system have(More)