James P Herman

Learn More
The survival and well-being of all species requires appropriate physiological responses to environmental and homeostatic challenges. The re- establishment and maintenance of homeostasis entails the coordinated activation and control of neuroendocrine and autonomic stress systems. These collective stress responses are mediated by largely overlapping circuits(More)
Appropriate regulatory control of the hypothalamo-pituitary-adrenocortical stress axis is essential to health and survival. The following review documents the principle extrinsic and intrinsic mechanisms responsible for regulating stress-responsive CRH neurons of the hypothalamic paraventricular nucleus, which summate excitatory and inhibitory inputs into a(More)
Integration of the hypothalamo-pituitary-adrenal stress response occurs by way of interactions between stress-sensitive brain circuitry and neuroendocrine neurons of the hypothalamic paraventricular nucleus (PVN). Stressors involving an immediate physiologic threat ('systemic' stressors) are relayed directly to the PVN, probably via brainstem(More)
Limbic dysfunction and hypothalamo-pituitary-adrenocortical (HPA) axis dysregulation are key features of affective disorders. The following review summarizes our current understanding of the relationship between limbic structures and control of ACTH and glucocorticoid release, focusing on the hippocampus, medial prefrontal cortex and amygdala. In general,(More)
The axonal projections of the ventral subiculum to the bed nucleus of the stria terminalis (BST) were examined in the rat with the anterograde neuronal tracer Phaseolus vulgaris-leucoagglutinin (PHA-L). Axons originating in the ventral subiculum coursed to the BST through either the fimbria-fornix, or a pathway involving the stria terminalis via the(More)
The pattern and time course of brain activation in response to acute swim and restraint stress were examined in the rat by in situ hybridization using complementary RNA probes specific for transcripts encoding the products of the immediate early genes c-fos, c-jun and zif/268. A widespread pattern of c-fos messenger RNA expression was detected in response(More)
Limbic and cortical neurocircuits profoundly influence hypothalamic-pituitary-adrenal (HPA) axis responses to stress yet have little or no direct projections to the hypothalamic paraventricular nucleus (PVN). Numerous lines of evidence suggest that the bed nucleus of the stria terminalis (BST) is well positioned to relay limbic information to the PVN. The(More)
Two isoforms of the vesicular glutamate transporter, VGLUT1 and VGLUT2, were recently cloned and biophysically characterized. Both VGLUT1 and VGLUT2 specifically transport glutamate into synaptic vesicles, making them definitive markers for neurons using glutamate as a neurotransmitter. The present study takes advantage of the specificity of the vesicular(More)
The optic tectum is the major synaptic target of retinal axons in birds. In the chick, retinal ganglion cell axons enter the optic tectum through a superficial lamina (the stratum opticum), extended branches into deeper laminae, and arborize in specific "retinorecipient" laminae, where they form synapses. Studies using an organotypic culture system have(More)
The hypothalamo-pituitary-adrenocortical (HPA) axis is the primary modulator of the adrenal glucocorticoid stress response. Activation of this axis occurs by way of a discrete set of neurons in the hypothalamic paraventricular nucleus (PVN). The PVN neuron appears to be affected by multiple sources, including (1) brainstem aminergic/peptidergic afferents;(More)