James P. Freeman

Learn More
Cultures of Mycobacterium sp. strain PYR-1 were dosed with anthracene or phenanthrene and after 14 days of incubation had degraded 92 and 90% of the added anthracene and phenanthrene, respectively. The metabolites were extracted and identified by UV-visible light absorption, high-pressure liquid chromatography retention times, mass spectrometry, (1)H and(More)
The white rot fungus Pleurotus ostreatus, grown for 11 days in basidiomycetes rich medium containing [14C] phenanthrene, metabolized 94% of the phenanthrene added. Of the total radioactivity, 3% was oxidized to CO2. Approximately 52% of phenanthrene was metabolized to trans-9,10-dihydroxy-9,10-dihydrophenanthrene (phenanthrene trans-9,10-dihydrodiol) (28%),(More)
The initial metabolites in the degradation of pyrene, anthracene, fluorene, and dibenzothiophene by Pleurotus ostreatus were isolated by high-pressure liquid chromatography and characterized by UV-visible, gas-chromatographic, mass-spectrometric, and (sup1)H nuclear magnetic resonance spectral techniques. The metabolites from pyrene, dibenzothiophene,(More)
The degradation of pyrene, a polycyclic aromatic hydrocarbon containing four aromatic rings, by pure cultures of a Mycobacterium sp. was studied. Over 60% of [14C]pyrene was mineralized to CO2 after 96 h of incubation at 24 degrees C. High-pressure liquid chromatography analyses showed the presence of one major and at least six other metabolites that(More)
Mycobacterium sp. strain PYR-1, previously shown to extensively mineralize high-molecular-weight polycyclic aromatic hydrocarbons in pure culture and in sediments, degrades fluoranthene to 9-fluorenone-1-carboxylic acid. In this study, 10 other fluoranthene metabolites were isolated from ethyl acetate extracts of the culture medium by thin-layer and(More)
Mycobacterium vanbaalenii PYR-1 was the first bacterium isolated by virtue of its ability to metabolize the high-molecular-weight polycyclic aromatic hydrocarbon (PAH) pyrene. We used metabolic, genomic, and proteomic approaches in this investigation to construct a complete and integrated pyrene degradation pathway for M. vanbaalenii PYR-1. Genome sequence(More)
The white rot fungus Phanerochaete chrysosporium metabolized phenanthrene when it was grown for 7 days at 37 degrees C in a medium containing malt extract, D-glucose, D-maltose, yeast extract, and Tween 80. After cultures were grown with [9-14C]phenanthrene, radioactive metabolites were extracted from the medium with ethyl acetate, separated by(More)
Fecal bacteria from a healthy individual were screened for the specific bacteria involved in the metabolism of dietary isoflavonoids. Two strains of bacteria capable of producing primary and secondary metabolites from the natural isoflavone glycosides daidzin and genistin were detected. The metabolites were identified by comparison of their HPLC/mass, 1H(More)
Metabolism of the environmental pollutant benzo[a]pyrene in the bacterium Mycobacterium vanbaalenii PYR-1 was examined. This organism initially oxidized benzo[a]pyrene with dioxygenases and monooxygenases at C-4,5, C-9,10, and C-11,12. The metabolites were separated by reversed-phase high-performance liquid chromatography (HPLC) and characterized by(More)
Mycobacterium vanbaalenii PYR-1 is able to metabolize a wide range of low- and high-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs). A 20-kDa protein was upregulated in PAH-metabolizing M. vanbaalenii PYR-1 cells compared to control cultures. The differentially expressed protein was identified as a beta subunit of the terminal dioxygenase(More)