James P . Butler

Learn More
Mechanical stresses were applied directly to cell surface receptors with a magnetic twisting device. The extracellular matrix receptor, integrin beta 1, induced focal adhesion formation and supported a force-dependent stiffening response, whereas nonadhesion receptors did not. The cytoskeletal stiffness (ratio of stress to strain) increased in direct(More)
We report a scaling law that governs both the elastic and frictional properties of a wide variety of living cell types, over a wide range of time scales and under a variety of biological interventions. This scaling identifies these cells as soft glassy materials existing close to a glass transition, and implies that cytoskeletal proteins may regulate cell(More)
N-acetylcysteine has been widely used as an antioxidant in vivo and in vitro. Its reaction with four oxidant species has therefore been examined. N-acetylcysteine is a powerful scavenger of hypochlorous acid (H--OCl); low concentrations are able to protect alpha 1-antiproteinase against inactivation by HOCl. N-acetylcysteine also reacts with hydroxyl(More)
Adherent cells exert tractions on their surroundings. These tractions can be measured by observing the displacements of beads embedded on a flexible gel substrate on which the cells are cultured. This paper presents an exact solution to the problem of computing the traction field from the observed displacement field. The solution rests on recasting the(More)
Fundamental biological processes including morphogenesis, tissue repair and tumour metastasis require collective cell motions1–3, and to drive these motions cells exert traction forces on their surroundings4. Current understanding emphasizes that these traction forces arise mainly in ‘leader cells’ at the front edge of the advancing cell sheet5–9. Our data(More)
In dealing with systems as complex as the cytoskeleton, we need organizing principles or, short of that, an empirical framework into which these systems fit. We report here unexpected invariants of cytoskeletal behavior that comprise such an empirical framework. We measured elastic and frictional moduli of a variety of cell types over a wide range of time(More)
It has been suggested that taurine, hypotaurine and their metabolic precursors (cysteic acid, cysteamine and cysteinesulphinic acid) might act as antioxidants in vivo. The rates of their reactions with the biologically important oxidants hydroxyl radical (.OH), superoxide radical (O2.-), hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) were studied.(More)
The tensegrity hypothesis holds that the cytoskeleton is a structure whose shape is stabilized predominantly by the tensile stresses borne by filamentous structures. Accordingly, cell stiffness must increase in proportion with the level of the tensile stress, which is called the prestress. Here we have tested that prediction in adherent human airway smooth(More)
Cells comprising a tissue migrate as part of a collective. How collective processes are coordinated over large multi-cellular assemblies has remained unclear, however, because mechanical stresses exerted at cell-cell junctions have not been accessible experimentally. We report here maps of these stresses within and between cells comprising a monolayer.(More)
NAD(P)H:quinone oxidoreductase (NQO1; DT-diaphorase) is elevated in certain tumors, such as non-small cell lung cancer (NSCLC). Compounds such as mitomycin C and streptonigrin are efficiently bioactivated by NQO1 and have been used in an enzyme-directed approach to chemotherapy. Previously, 2,5-diaziridinyl-3,6-dimethyl-1,4-benzoquinone (MeDZQ) was(More)