Learn More
Computing the 1-width of the incidence matrix of a Steiner Triple System gives rise to small set covering instances that provide a computational challenge for integer programming techniques. One major source of difficulty for instances of this family is their highly symmetric structure, which impairs the performance of most branch-and-bound algorithms. The(More)
Orbital branching is a method for branching on variables in integer programming that reduces the likelihood of evaluating redundant, isomorphic nodes in the branch-and-bound procedure. In this work, the orbital branching methodology is extended so that the branching disjunction can be based on an arbitrary constraint. Many important families of integer(More)
Mathematical programs whose formulation is symmetric often take a long time to solve using Branch-and-Bound type algorithms, because of the several symmetric optima. A simple technique used in these cases is to adjoin symmetry breaking constraints to the formulation before solving the problem. These constraints: (a) aim to guarantee that at least one(More)
  • 1