Learn More
In many organisms, pattern formation in the embryo develops from the polarized distributions of messenger RNAs (mRNAs) in the egg. In Xenopus, the mRNA encoding Vg1, a growth factor involved in mesoderm induction, is localized to the vegetal cortex of oocytes. A protein named Vera was shown to be involved in Vg1 mRNA localization. Vera cofractionates with(More)
During oogenesis in Xenopus laevis, several RNAs that localize to the vegetal cortex via one of three temporally defined pathways have been identified. Although individual mRNAs utilize only one pathway, there is functional overlap and apparent continuity between them, suggesting that common cis-acting sequences may exist. Because previous work with the Vg1(More)
BACKGROUND Cytoplasmic mRNA localization is a widespread mechanism for restricting the translation of specific mRNAs to distinct regions of eucaryotic cells. This process involves specific interactions between cellular factors and localization signals in the 3' untranslated regions of the localized mRNA. Because only a few of these cellular factors have(More)
The Caenorhabditis elegans heterochronic genes control the relative timing and sequence of many events during postembryonic development, including the terminal differentiation of the lateral hypodermis, which occurs during the final (fourth) molt. Inactivation of the heterochronic gene lin-42 causes hypodermal terminal differentiation to occur precociously,(More)
In Xenopus, an early and a late pathway exist for the selective localization of RNAs to the vegetal cortex during oogenesis. Previous work has suggested that distinct cellular mechanisms mediate localization during these pathways. Here, we provide several independent lines of evidence supporting the existence of common machinery for RNA localization during(More)
The subcellular localization of specific mRNAs is a widespread mechanism for regulating gene expression. In Xenopus oocytes microtubules are required for localization of Vg1 mRNA to the vegetal cortex during the late RNA localization pathway. The factors that mediate microtubule-based RNA transport during the late pathway have been elusive. Here we show(More)
BACKGROUND Short (~5 nucleotides) interspersed repeats regulate several aspects of post-transcriptional gene expression. Previously we developed an algorithm (REPFIND) that assigns P-values to all repeated motifs in a given nucleic acid sequence and reliably identifies clusters of short CAC-containing motifs required for mRNA localization in Xenopus(More)
Background: Short (~5 nucleotides) interspersed repeats regulate several aspects of post-transcriptional gene expression. Previously we developed an algorithm (REPFIND) that assigns P-values to all repeated motifs in a given nucleic acid sequence and reliably identifies clusters of short CAC-containing motifs required for mRNA localization in Xenopus(More)
  • 1