Learn More
We consider Fisher-KPP-type reaction-diffusion equations with spatially inhomogeneous reaction rates. We show that a sufficiently strong localized inhomogeneity may prevent existence of transition-front-type global in time solutions while creating a global in time bump-like solution. This is the first example of a medium in which no reaction-diffusion(More)
We describe a projection framework for developing adaptive multiscale methods for computing approximate solutions to elliptic boundary value problems. The framework is consistent with homogenization when there is scale separation. We introduce an adaptive form of the finite element algorithms for solving problems with no clear scale separation. We present(More)
We prove the existence of reaction-diffusion traveling fronts in mean zero space-time periodic shear flows for nonnegative reactions including the classical KPP (Kolmogorov-Petrovsky-Piskunov) nonlinearity. For the KPP nonlinearity, the minimal front speed is characterized by a variational principle involving the principal eigenvalue of a space-time(More)
We study the asymptotics of two space dimensional reaction-diffusion front speeds through mean zero space-time periodic shears using both analytical and numerical methods. The analysis hinges on traveling fronts and their estimates based on qualitative properties such as mono-tonicity and a priori integral inequalities. The computation uses an explicit(More)
We prove the existence of Kolmogorov-Petrovsky-Piskunov (KPP) type traveling fronts in space-time periodic and mean zero incompress-ible advection, and establish a variational (minimization) formula for the minimal speeds. We approach the existence by considering limit of a sequence of front solutions to a regularized traveling front equation where the(More)
We study the asymptotic spreading of Kolmogorov-Petrovsky-Piskunov (KPP) fronts in space-time random incompressible flows in dimension d > 1. We prove that if the flow field is stationary, ergodic, and obeys a suitable moment condition, the large time front speeds (spreading rates) are deterministic in all directions for compactly supported initial data.(More)