James Monaco

Learn More
The identification of phenotypic changes in breast cancer (BC) histopathology on account of corresponding molecular changes is of significant clinical importance in predicting disease outcome. One such example is the presence of lymphocytic infiltration (LI) in histopathology, which has been correlated with nodal metastasis and distant recurrence in HER2+(More)
In this paper we present a high-throughput system for detecting regions of carcinoma of the prostate (CaP) in HSs from radical prostatectomies (RPs) using probabilistic pairwise Markov models (PPMMs), a novel type of Markov random field (MRF). At diagnostic resolution a digitized HS can contain 80Kx70K pixels - far too many for current automated Gleason(More)
BACKGROUND Supervised classifiers for digital pathology can improve the ability of physicians to detect and diagnose diseases such as cancer. Generating training data for classifiers is problematic, since only domain experts (e.g. pathologists) can correctly label ground truth data. Additionally, digital pathology datasets suffer from the "minority class(More)
Functional (i.e., logic) verification of the current generation of complex, super-scalar microprocessors such as the PowerPC 604™ microprocessor presents significant challenges to a project's verification participants. Simple architectural level tests are insufficient to gain confidence in the quality of the design. Detailed planning must be combined with a(More)
In this paper we present a Markov random field (MRF) driven region-based active contour model (MaRACel) for medical image segmentation. State-of-the-art region-based active contour (RAC) models assume that every spatial location in the image is statistically independent of the others, thereby ignoring valuable contextual information. To address this(More)
Exploiting the quasi-linear relationship between local phase and disparity, phase-differencing registration algorithms provide a fast, powerful means for disparity estimation. Unfortunately, these phase-differencing techniques suffer a significant impediment: phase nonlinearities. In regions of phase nonlinearity, the signals under consideration possess(More)
Color nonstandardness--the propensity for similar objects to exhibit different color properties across images--poses a significant problem in the computerized analysis of histopathology. Though many papers propose means for improving color constancy, the vast majority assume image formation via reflective light instead of light transmission as in(More)
The ability of classification systems to adjust their performance (sensitivity/specificity) is essential for tasks in which certain errors are more significant than others. For example, mislabeling cancerous lesions as benign is typically more detrimental than mislabeling benign lesions as cancerous. Unfortunately, methods for modifying the performance of(More)
Biological vision systems have inspired and will continue to inspire the development of computer vision systems. One biological tendency that has never been exploited is the symbiotic relationship between foveation and uncal-ibrated active, binocular vision systems. The primary goal of any binocular vision system is the correspondence of the two retinal(More)
For personalization of medicine, increasingly clinical and demographic data are integrated into nomograms for prognostic use, while molecular biomarkers are being developed to add independent diagnostic, prognostic, or management information. In a number of cases in surgical pathology, morphometric quantitation is already performed manually or(More)