James MacGlashan

Learn More
As intelligent robots become more prevalent, methods to make interaction with the robots more accessible are increasingly important. Communicating the tasks that a person wants the robot to carry out via natural language, and training the robot to ground the natural language through demonstration, are especially appealing approaches for interaction, since(More)
For real-world applications, virtual agents must be able to learn new behaviors from non-technical users. Positive and negative feedback are an intuitive way to train new behaviors, and existing work has presented algorithms for learning from such feedback. That work, however, treats feedback as numeric reward to be maximized, and assumes that all trainers(More)
Robots that interact with people must flexibly respond to requests by planning in stochastic state spaces that are often too large to solve for optimal behavior. In this work, we develop a framework for goal and state dependent action priors that can be used to prune away irrelevant actions based on the robot’s current goal, thereby greatly accelerating(More)
Emerging AI systems will be making more and more decisions that impact the lives of humans in a significant way. It is essential, then, that these AI systems make decisions that take into account the desires, goals, and preferences of other people, while simultaneously learning about what those preferences are. In this work, we argue that the(More)
This paper introduces two novel algorithms for learning behaviors from human-provided rewards. The primary novelty of these algorithms is that instead of treating the feedback as a numeric reward signal, they interpret feedback as a form of discrete communication that depends on both the behavior the trainer is trying to teach and the teaching strategy used(More)
Robotic agents often map perceptual input to simplified representations that do not reflect the complexity and richness of the world. This simplification is due in large part to the limitations of planning algorithms, which fail in large stochastic state spaces on account of the well-known “curse of dimensionality.” Existing approaches to address this(More)
Research in learning from demonstration can generally be grouped into either imitation learning or intention learning. In imitation learning, the goal is to imitate the observed behavior of an expert and is typically achieved using supervised learning techniques. In intention learning, the goal is to learn the intention that motivated the expert’s behavior(More)
Programming robot behavior can be painstaking: for a layperson, this path is unavailable without investing significant effort in building up proficiency in coding. In contrast, nearly half of American households have a pet dog and at least some exposure to animal training, suggesting an alternative path for customizing robot behavior. Unfortunately, most(More)